化工学报 ›› 2022, Vol. 73 ›› Issue (5): 1883-1893.doi: 10.11949/0438-1157.20211810

• 综述与专论 • 上一篇    下一篇

离子液体的电导性质研究进展

付雪(),陈婷婷,陈婷婷,许映杰()   

  1. 绍兴文理学院化学化工学院,浙江 绍兴 312000
  • 收稿日期:2021-12-23 修回日期:2022-03-03 出版日期:2022-05-05 发布日期:2022-05-24
  • 通讯作者: 许映杰 E-mail:845772535@qq.com;xuyj@usx.edu.cn
  • 作者简介:付雪(1995—),女,硕士研究生,845772535@qq.com
  • 基金资助:
    国家自然科学基金项目(21978172);浙江省自然科学基金项目(LY18B060004)

Research progress on the conductivity properties of ionic liquids

Xue FU(),Tingting CHEN,Tingting CHEN,Yingjie XU()   

  1. College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, China
  • Received:2021-12-23 Revised:2022-03-03 Published:2022-05-05 Online:2022-05-24
  • Contact: Yingjie XU E-mail:845772535@qq.com;xuyj@usx.edu.cn

摘要:

离子液体(ILs)具有优异的导电能力,其电导性质不仅是电化学应用的基础,而且广泛用于研究ILs溶液热力学性质与微观结构。本文首先总结了近年来实验测定法在研究纯ILs、ILs+溶剂和ILs+ILs体系电导率(κ)或摩尔电导率(Λ)等方面取得的进展,详细讨论了ILs结构、ILs浓度、温度等因素对体系κΛ的影响,并结合溶液热力学模型分析了ILs κΛ的变化规律。在此基础上,重点介绍了电导性质在研究纯ILs的离子率以及ILs+溶剂体系微观结构和相互作用方面的应用及进展。最后,对ILs电导性质研究与应用提出了几点建议。

关键词: 离子液体, 电导率, 摩尔电导率, 离子率, 热力学, 电化学

Abstract:

Ionic liquids (ILs) have excellent electrical conductivity, and their conductivity properties are not only a key property for its electrochemical applications, but also widely used to investigate the thermodynamic properties and microstructure of the mixture containing ILs. Firstly, the recent experimental research progress on the conductivity (κ) or molar conductivity (Λ) of pure ILs, ILs+solvents and ILs+ILs systems are summarized, and the effects of the structure of ILs, temperature, and concentration on κ or Λ are discussed. Combined with the solution thermodynamic model, the changing laws of κ or Λ of ILs are analyzed. On this basis, the application and progress of electrical conductivity properties in studying the ionic rate of pure ILs and the microstructure and interaction of ILs+solvent systems are highlighted. Finally, some suggestions are made on the research and application of the conductivity properties of ILs.

Key words: ionic liquids, conductivity, molar conductivity, ionicity, thermodynamics, electrochemistry

中图分类号: 

  • TQ 013.1
1 Rogers R D, Seddon K R. Ionic liquids-solvents of the future? [J]. Science, 2003, 302(5646): 792-793.
2 Dong K, Liu X M, Dong H F, et al. Multiscale studies on ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6636-6695.
3 Zhang X P, Zhang X C, Dong H F, et al. Carbon capture with ionic liquids: overview and progress [J]. Energy & Environmental Science, 2012, 5(5): 6668-6681.
4 Lin M C, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520: 324-328.
5 Amarasekara A S. Acidic ionic liquids[J]. Chemical Reviews, 2016, 116(10): 6133-6183.
6 Philippi F, Welton T. Targeted modifications in ionic liquids-from understanding to design[J]. Physical Chemistry Chemical Physics, 2021, 23(12): 6993-7021.
7 Liu J J, Xu Y J. NO x absorption and conversion by ionic liquids[J]. Journal of Hazardous Materials, 2021, 409: 124503.
8 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147.
Liu J J, Fu X, Xu Y J. Progress on carbon monoxide removal using ionic liquids[J]. CIESC Journal, 2020, 71(1): 138-147.
9 Hallett J P, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2[J]. Chemical Reviews, 2011, 111(5): 3508-3576.
10 Vogl T, Menne S, Kühnel R S, et al. The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications[J]. Journal of Materials Chemistry A, 2014, 2(22): 8258-8265.
11 MacFarlane D R, Tachikawa N, Forsyth M, et al. Energy applications of ionic liquids[J]. Energy & Environmental Science, 2014, 7(1): 232-250.
12 Forse A C, Griffin J M, Merlet C, et al. NMR study of ion dynamics and charge storage in ionic liquid supercapacitors[J]. Journal of the American Chemical Society, 2015, 137(22): 7231-7242.
13 Papović S, Cvjetićanin N, Gadžurić S, et al. Physicochemical and electrochemical characterisation of imidazolium based IL + GBL mixtures as electrolytes for lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(41): 28139-28152.
14 Ahmed F, Rahman M M, Sutradhar S C, et al. Synthesis of an imidazolium functionalized imide based electrolyte salt and its electrochemical performance enhancement with additives in Li-ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 178-185.
15 Zhu N, Zhang K, Wu F, et al. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries[J]. Energy Material Advances, 2021, 2021: 1-29.
16 Haque M, Li Q, Rigato C, et al. Identification of self-discharge mechanisms of ionic liquid electrolyte based supercapacitor under high-temperature operation [J]. Journal of Power Sources, 2021, 485: 229328.
17 Boruń A. Conductance and ionic association of selected imidazolium ionic liquids in various solvents: a review[J]. Journal of Molecular Liquids, 2019, 276: 214-224.
18 Feng J Z, Wang Y, Xu Y T, et al. Ion regulation of ionic liquid electrolytes for supercapacitors[J]. Energy & Environmental Science, 2021, 14(5): 2859-2882.
19 Yue K, Zhai C X, Gu S N, et al. Performance-enhanced lithium metal batteries through ionic liquid based electrolytes and mechanism research derived by density functional theory calculations[J]. Electrochimica Acta, 2021, 368: 137535.
20 Feng G, Chen M, Bi S, et al. Free and bound states of ions in ionic liquids, conductivity, and underscreening paradox[J]. Physical Review X, 2019, 9(2): 021024.
21 Fayyaz K, Jafary S, Bakhshi P, et al. Accurate prediction of electrical conductivity of ionic liquids + propylene carbonate binary mixtures[J]. Journal of Molecular Liquids, 2019, 279: 400-410.
22 Zhu X, Song M L, Wang S H, et al. Understanding the effect of molecular solvents on the microscopic network of DBU imidazole ionic liquid[J]. Journal of Molecular Liquids, 2019, 276: 325-333.
23 Nilsson-Hallén J, Ahlström B, Marczewski M, et al. Ionic liquids: a simple model to predict ion conductivity based on DFT derived physical parameters[J]. Frontiers in Chemistry, 2019, 7: 126.
24 李春喜. 离子液体的溶液热力学模型研究进展[J]. 化工学报, 2020, 71(1): 81-91.
Li C X. Recent advances in thermodynamic modelling of ionic liquid solutions[J]. CIESC Journal, 2020, 71(1): 81-91.
25 张先明, 胡玉峰, 杨振钰, 等. 离子液体的黏度与其扩散系数和电导率的新型关系方程[J]. 中国科学: 化学, 2014, 44(6): 1034-1040.
Zhang X M, Hu Y F, Yang Z Y, et al. New relations between viscosity and self-diffusion coefficient or conductivity of ionic liquids[J]. Scientia Sinica Chimica, 2014, 44(6): 1034-1040.
26 Song F, Xiao Y J, An S H, et al. Prediction of infinite dilution molar conductivity for unconventional ions: a quantitative structure-property relationship study[J]. Industrial & Engineering Chemistry Research, 2021, 60(40): 14625-14634.
27 Köddermann T, Klembt S, Klasen D, et al. The effect of neutral ion aggregate formation on the electrical conductivity of an ionic liquid and its mixtures with chloroform[J]. ChemPhysChem, 2012, 13(7): 1748-1752.
28 Chen Y F, Hu Y F, Yang Z Y, et al. Prediction of density, viscosity, and conductivity of the ternary aqueous solutions of piperidinium-based ionic liquids at different temperatures and atmospheric pressure using the data of their binary subsystems[J]. Fluid Phase Equilibria, 2014, 383: 55-71.
29 Pal A, Yadav S. Effect of a copolymer poly(4-styrenesufonic acid-co-maleic acid) sodium salt on aggregation behaviour of imidazolium based surface active ionic liquid in aqueous solution[J]. Journal of Molecular Liquids, 2017, 246: 342-349.
30 Hou M Y, Xu Y J, Han Y J, et al. Thermodynamic properties of aqueous solutions of two ammonium-based protic ionic liquids at 298.15 K[J]. Journal of Molecular Liquids, 2013, 178: 149-155.
31 Shekaari H, Jebali F. Densities and electrical conductances of amino acids+ ionic liquid ([HMIm]Br) + H2O mixtures at 298.15 K[J]. Fluid Phase Equilibria, 2010, 295(1): 68-75.
32 Bešter-Rogač M, Hunger J, Stoppa A, et al. Molar conductivities and association constants of 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium tetrafluoroborate in methanol and DMSO[J]. Journal of Chemical & Engineering Data, 2010, 55(5): 1799-1803.
33 Wang J J, Wang H Y, Zhang S L, et al. Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C n mim]Br (n=4, 6, 8, 10, 12) in aqueous solutions[J]. The Journal of Physical Chemistry B, 2007, 111(22): 6181-6188.
34 Guo L P, Wang C M, Luo X Y, et al. Probing catalytic activity of halide salts by electrical conductivity in the coupling reaction of CO2 and propylene oxide[J]. Chemical Communications, 2010, 46(32): 5960-5962.
35 Sangoro J R, Kremer F. Charge transport and glassy dynamics in ionic liquids[J]. Accounts of Chemical Research, 2012, 45(4): 525-532.
36 Nancarrow P, Al-Othman A, Mital D K, et al. Comprehensive analysis and correlation of ionic liquid conductivity data for energy applications[J]. Energy, 2021, 220: 119761.
37 Sangoro J R, Serghei A, Naumov S, et al. Charge transport and mass transport in imidazolium-based ionic liquids[J]. Physical Review E, 2008, 77(5): 051202.
38 王方惠,李春喜, 孟洪, 等. 离子液体在水、乙醇及其混合物中的电导率测定[J]. 北京化工大学学报(自然科学版), 2006, 33(6):17-21.
Wang F H, Li C X, Meng H, et al. Determination of conductivity of ionic liquids in water or ethanol and their mixtures[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2006, 33(6): 17-21.
39 Hou H Y, Jiao B J, Li Q Z, et al. Physicochemical properties, 1H-NMR, ab initio calculations and molecular interaction in binary mixtures of N-methylimidazole with methanol[J]. Journal of Solution Chemistry, 2018, 47(11): 1875-1901.
40 Das S, Dutta T, Borah R. Comparative study of the physical and electrochemical behavior of direct N-SO3H functionalized 1, 3-disulfo-2-alkyl-imidazolium trifluoroacetate ionic liquids in molecular solvents[J]. Journal of Molecular Liquids, 2019, 289: 111099.
41 Mou L, Chai Y Y, Yang G Z, et al. Density and viscosity of four binary mixtures of [C2mmim][NTf2]/[C4mmim][NTf2] + dimethyl carbonate/diethyl carbonate[J]. The Journal of Chemical Thermodynamics, 2019, 130: 183-191.
42 Rofika R N S, Honggowiranto W, Jodi H, et al. The effect of acetonitrile as an additive on the ionic conductivity of imidazolium-based ionic liquid electrolyte and charge-discharge capacity of its Li-ion battery[J]. Ionics, 2019, 25(8): 3661-3671.
43 Stoppa A, Buchner R, Hefter G. How ideal are binary mixtures of room-temperature ionic liquids? [J]. Journal of Molecular Liquids, 2010, 153(1): 46-51.
44 Niedermeyer H, Hallett J P, Villar-Garcia I J, et al. Mixtures of ionic liquids[J]. Chemical Society Reviews, 2012, 41(23): 7780-7802.
45 Chatel G, Pereira J F B, Debbeti V, et al. Mixing ionic liquids:"simple mixtures" or "double salts"? [J]. Green Chemistry, 2014, 16(4): 2051-2083.
46 Kapoor U, Shah J K. Thermophysical properties of imidazolium-based binary ionic liquid mixtures using molecular dynamics simulations[J]. Journal of Chemical & Engineering Data, 2018, 63(7): 2512-2521.
47 Thawarkar S, Khupse N D, Shinde D R, et al. Understanding the behavior of mixtures of protic-aprotic and protic-protic ionic liquids: conductivity, viscosity, diffusion coefficient and ionicity[J]. Journal of Molecular Liquids, 2019, 276: 986-994.
48 Khan I A, Shah F U. Fluorine-free ionic liquid-based electrolyte for supercapacitors operating at elevated temperatures[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10212-10221.
49 Liang L, Yuan W F, Chen X H, et al. Flexible, nonflammable, highly conductive and high-safety double cross-linked poly (ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries[J]. Chemical Engineering Journal, 2021, 421: 130000.
50 Zhang Y, Li T, Wu Z K, et al. Synthesis and thermophysical properties of imidazolate-based ionic liquids: influences of different cations and anions[J]. The Journal of Chemical Thermodynamics, 2014, 74: 209-215.
51 侯海云, 黄银蓉, 王升泽, 等. 咪唑醋酸盐的制备和物理化学性质及其水和乙醇溶液的电导率[J]. 物理化学学报, 2011, 27(11): 2512-2520.
Hou H Y, Huang Y R, Wang S Z, et al. Preparation and physicochemical properties of imidazolium acetates and the conductivities of their aqueous and ethanol solutions[J]. Acta Physico-Chimica Sinica, 2011, 27(11): 2512-2520.
52 Pandit S A, Rather M A, Bhat S A, et al. Influence of the anion on the equilibrium and transport properties of 1-butyl-3-methylimidazolium based room temperature ionic liquids[J]. Journal of Solution Chemistry, 2016, 45(12): 1641-1658.
53 Yu Y H, Soriano A N, Li M H. Heat capacities and electrical conductivities of 1-n-butyl-3-methylimidazolium-based ionic liquids[J]. Thermochimica Acta, 2009, 482(1/2): 42-48.
54 Rodil E, Arce A, Arce A, et al. Measurements of the density, refractive index, electrical conductivity, thermal conductivity and dynamic viscosity for tributylmethylphosphonium and methylsulfate based ionic liquids[J]. Thermochimica Acta, 2018, 664: 81-90.
55 Zheng Y, Zheng Y, Wang Q J, et al. Density, viscosity, and electrical conductivity of 1-alkyl-3-methylimidazolium dicyanamide ionic liquids[J]. Journal of Chemical & Engineering Data, 2021, 66(1): 480-493.
56 Mbondo T B E, Sarraute S, Traïkia M, et al. Transport properties and ionic association in pure imidazolium-based ionic liquids as a function of temperature[J]. Journal of Chemical & Engineering Data, 2014, 59(6): 1747-1754.
57 Grishina E P, Kudryakova N O, Ramenskaya L M, et al. The temperature effect on the transport properties of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids[J]. Russian Journal of Physical Chemistry A, 2018, 92(4): 724-729.
58 宁汇, 侯民强, 杨德重, 等. 二元混合离子液体的电导率与离子间的缔合作用[J]. 物理化学学报, 2013, 29(10): 2107-2113.
Ning H, Hou M Q, Yang D Z, et al. Ionic association in binary ionic liquids by conductivity[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2107-2113.
59 Vila J, Varela L M, Cabeza O. Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids[J]. Electrochimica Acta, 2007, 52(26): 7413-7417
60 Nahra M, Chainet E, Svecova L, et al. Reliability of Arrhenius and several VTF laws to describe the effect of TaF5 addition onto the transport properties of 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide[J]. Fluid Phase Equilibria, 2016, 415: 101-109.
61 Harris K R. On the use of the Angell-Walden equation to determine the "ionicity" of molten salts and ionic liquids[J]. The Journal of Physical Chemistry B, 2019, 123(32): 7014-7023.
62 Liu Q S, Yan P F, Yang M, et al. Dynamic viscosity and conductivity of ionic liquids [C n py][NTf2] (n=2, 4, 5)[J]. Acta Physico-Chimica Sinica, 2011, 27(12): 2762-2766.
63 MacFarlane D R, Forsyth M, Izgorodina E I, et al. On the concept of ionicity in ionic liquids[J]. Physical Chemistry Chemical Physics, 2009, 11(25): 4962-4967.
64 邓玉艳, 陈恺, 姚加, 等. 质子型离子液体离子率的研究进展[J]. 中国科学: 化学, 2019, 49(7): 940-945.
Deng Y Y, Chen K Z, Yao J, et al. Progress in the study of ionicity of protic ionic liquids[J]. Scientia Sinica Chimica, 2019, 49(7): 940-945.
65 Tokuda H, Hayamizu K, Ishii K, et al. Physicochemical properties and structures of room temperature ionic liquids (2): Variation of alkyl chain length in imidazolium cation[J]. The Journal of Physical Chemistry B, 2005, 109(13): 6103-6110.
66 Miran M S, Kinoshita H, Yasuda T, et al. Physicochemical properties determined by ΔpKa for protic ionic liquids based on an organic super-strong base with various Brønsted acids[J]. Physical Chemistry Chemical Physics, 2012, 14(15): 5178-5186.
67 Yasuda T, Kinoshita H, Miran M S, et al.Comparative study on physicochemical properties of protic ionic liquids based on allylammonium and propylammonium cations[J]. Journal of Chemical & Engineering Data, 2013, 58(10): 2724-2732.
68 Shen M M, Zhang Y Y, Chen K Z, et al. Ionicity of protic ionic liquid: quantitative measurement by spectroscopic methods[J]. The Journal of Physical Chemistry B, 2017, 121(6): 1372-1376.
69 Deng Y Y, Yao J, Li H R. Effects of ionicity and chain structure on the physicochemical properties of protic ionic liquids[J]. AIChE Journal, 2020, 66(10): e16982.
70 Chen K Z, Wang Y T, Yao J, et al. Equilibrium in protic ionic liquids: the degree of proton transfer and thermodynamic properties[J]. The Journal of Physical Chemistry B, 2018, 122(1): 309-315.
71 Kasprzak D, Stępniak I, Galiński M. Acetate-and lactate-based ionic liquids: synthesis, characterisation and electrochemical properties[J]. Journal of Molecular Liquids, 2018, 264: 233-241.
72 Ghalami-Choobar B, Fallahkar T N. Thermophysical properties of 1-ethyl-3-methylimidazolium bromide ionic liquid in water + ethylene carbonate mixtures at T=(298.2, 308.2 and 318.2) K[J]. Fluid Phase Equilibria, 2019, 49: 42-60.
73 Boruń A, Bald A. Ionic association and conductance of [emim][BF 4] and [bmim][BF4] in 1-butanol in a wide range of temperature[J]. The Journal of Chemical Thermodynamics, 2016, 96: 175-180.
74 Boruń A. Conductometric studies of [emim][BF4] and [bmim][BF 4] in propan-2-ol. Association of ionic liquids in alcohols[J]. Journal of Molecular Liquids, 2017, 240: 717-722.
75 Boruń A, Bald A. Conductometric studies of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate in 1-propanol at temperatures from (283.15 to 318.15) K[J]. International Journal of Electrochemical Science, 2014, 9: 2790-2804.
76 Boruń A, Bald A. Conductance and ionic association of imidazolium-based ionic liquids in N, N-dimethylacetamide[J]. Journal of Chemical & Engineering Data, 2016, 61(11): 3788-3793.
77 Boruń A, Bald A. Conductometric studies of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate in N, N-dimethylformamide at temperatures from (283.15 to 318.15) K[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 475-481.
78 Boruń A, Fernandez C, Bald A. Conductance studies of aqueous ionic liquids solutions [emim][BF4] and [bmim][BF4] at temperatures from (283.15 to 318.15) K[J]. International Journal of Electrochemical Science, 2015, 10(3): 2120-2129.
79 Boruń A, Bald A. Ionic association and conductance of ionic liquids in dichloromethane at temperatures from 278.15 to 303.15 K[J]. Ionics, 2016, 22(6): 859-867.
80 Boruń A, Bald A. Triple ion formation in solutions of [emim][BF 4] and [bmim][BF4] in dichloromethane at various temperatures. A new method of analysis of conductivity data[J]. International Journal of Electrochemical Science, 2016, 11: 7714-7725.
81 Li W J, Han B X, Tao R T, et al. Measurement and correlation of the ionic conductivity of ionic liquid-molecular solvent solutions[J]. Chinese Journal of Chemistry, 2007, 25(9): 1349-1356.
82 Zhu A L, Wang J J, Han L J, et al. Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes[J]. Chemical Engineering Journal, 2009, 147(1): 27-35.
83 Every H, Bishop A G, Forsyth M, et al. Ion diffusion in molten salt mixtures[J]. Electrochimica Acta, 2000, 45(8/9): 1279-1284.
84 Martel R W, Kraus C A. The association of ions in dioxane-water mixtures at 25 degrees[J]. PNAS, 1955, 41: 9-20.
85 Fuoss R M. Ionic association (Ⅲ): The equilibrium between ion pairs and free ions[J]. Journal of the American Chemical Society, 1958, 80(19): 5059-5061.
86 Stoppa A, Hunger J, Buchner R. Conductivities of binary mixtures of ionic liquids with polar solvents[J]. Journal of Chemical & Engineering Data, 2009, 54(2): 472-479.
87 Casteel J F, Amis E S. Specific conductance of concentrated solutions of magnesium salts in water-ethanol system[J]. Journal of Chemical & Engineering Data, 1972, 17(1): 55-59.
88 Zhang Q G, Sun S S, Pitula S, et al. Electrical conductivity of solutions of ionic liquids with methanol, ethanol, acetonitrile, and propylene carbonate[J]. Journal of Chemical & Engineering Data, 2011, 56(12): 4659-4664.
89 Xu Y J. Volumetric, viscosity, and electrical conductivity properties of aqueous solutions of two n-butylammonium-based protic ionic liquids at several temperatures[J]. The Journal of Chemical Thermodynamics, 2013, 64: 126-133.
90 Zhang S N, Wang Y T, Wang X Y, et al. Physicochemical properties of the binary mixtures of CuII-containing chelate-based ionic liquids with linear alcohols[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 897-904.
91 Xu L, Cui X B, Zhang Y, et al. Measurement and correlation of electrical conductivity of ionic liquid [EMIM][DCA] in propylene carbonate and γ-butyrolactone[J]. Electrochimica Acta, 2015, 174: 900-907.
92 Burrell G L, Burgar I M, Gong Q X, et al. NMR relaxation and self-diffusion study at high and low magnetic fields of ionic association in protic ionic liquids[J]. The Journal of Physical Chemistry B, 2010, 114(35): 11436-11443.
93 Shekaari H, Mousavi S S. Conductometric studies of aqueous ionic liquids, 1-alkyl-3-methylimidazolium halide, solutions at T=298.15-328.15 K[J]. Fluid Phase Equilibria, 2009, 286(2): 120-126.
94 Zhang Q G, Liu D Y, Li Q, et al. Thermodynamic properties, excess properties, and molecular interactions of ionic liquids 1-cyanopropyl-3-methyl-imidazolium bis(fluorosulfonyl)imide/trifluoromethanesulfonate and binary systems containing acetonitrile[J]. Journal of Molecular Liquids, 2018, 268: 770-780.
95 Zhang Q G, Liu D Y, Li Q, et al. Density, electrical conductivity, dynamic viscosity, excess properties, and molecular interactions of ionic liquid 1-cyanopropyl-3-methylimidazolium tetrafluoroborate and binary system with acetonitrile[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1256-1265.
96 Wang H Y, Wang J J, Zhang S L, et al. Ionic association of the ionic liquids [C4mim][BF4], [C4mim][PF6], and [C n mim]Br in molecular solvents[J]. ChemPhysChem, 2009, 10(14): 2516-2523.
97 Chen J Y, Chen L X, Lu Y Q, et al. Physicochemical properties of aqueous solution of 1-methylimidazolium acetate ionic liquid at several temperatures[J]. Journal of Molecular Liquids, 2014, 197: 374-380.
98 Vila J, Rilo E, Segade L, et al. Electrical conductivity of aqueous solutions of aluminum salts[J]. Physical Review E, 2005, 71(3): 031201.
99 Annat G, Forsyth M, MacFarlane D R. Ionic liquid mixtures-variations in physical properties and their origins in molecular structure[J]. The Journal of Physical Chemistry B, 2012, 116(28): 8251-8258.
100 Castiglione F, Raos G, Appetecchi G B, et al. Blending ionic liquids: how physico-chemical properties change[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1784-1792.
101 Fletcher K, Baker S, Baker G, et al. Probing solute and solvent interactions within binary ionic liquid mixtures[J]. New Journal of Chemistry, 2003, 27(12): 1706-1712.
[1] 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843.
[2] 孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144.
[3] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[4] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[5] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[6] 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818.
[7] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[8] 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
[9] 白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862.
[10] 李淼, 赵虹, 姜标, 陈思远, 闫龙. 煤制乙炔关键中间体BaC2合成的热力学分析[J]. 化工学报, 2022, 73(5): 1908-1919.
[11] 殷亚然, 朱星星, 张先明, 朱春英, 付涛涛, 马友光. 微通道内醇胺/离子液体复配水溶液吸收CO2的传质特性[J]. 化工学报, 2022, 73(5): 1930-1939.
[12] 赵娟, 吴梦成, 雷惊雷, 李凌杰. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584.
[13] 任嘉辉, 刘豫, 刘朝, 刘浪, 李莹. 基于分子指纹和拓扑指数的工质临界温度理论预测[J]. 化工学报, 2022, 73(4): 1493-1500.
[14] 门文欣, 彭庆收, 桂霞. 不同季铵盐作用下的CO2水合物相平衡[J]. 化工学报, 2022, 73(4): 1472-1482.
[15] 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!