化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2962-2970.DOI: 10.11949/0438-1157.20220178
闫美月1(),邓坚2,潘良明1(),马在勇1,李想1,邓杰文1,何清澈1
收稿日期:
2022-02-07
修回日期:
2022-04-18
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
潘良明
作者简介:
闫美月(1993—),女,博士研究生, 基金资助:
Meiyue YAN1(),Jian DENG2,Liangming PAN1(),Zaiyong MA1,Xiang LI1,Jiewen DENG1,Qingche HE1
Received:
2022-02-07
Revised:
2022-04-18
Online:
2022-07-05
Published:
2022-08-01
Contact:
Liangming PAN
摘要:
设备最大运行功率受临界热通量(CHF)限制,而流量振荡会导致沸腾危机早发,此时的临界热通量称为PM-CHF。为了研究流量振荡条件下窄矩形通道内的临界热通量,进行单侧加热窄矩形通道内竖直向上流动条件下沸腾危机可视化实验,实验工质为去离子水,质量流速范围为350~2000 kg/(m2·s),窄缝宽度范围为1~5 mm,系统压力范围为1~4 MPa。结果显示,在窄矩形通道中CHF随质量流速的增加而线性增加。当流速较小时会发生流量振荡,振荡周期约为0.1 s。流量振荡继而导致沸腾危机早发,其流型表现为弹状流-搅混流。此外,针对本实验观察到的流量振荡和窄矩形通道内气泡动力学特性,从流量振荡的角度进行理论分析与推导,建立窄矩形通道内由于流动失稳引起的PM-CHF机理模型,预测误差在30%以内。
中图分类号:
闫美月, 邓坚, 潘良明, 马在勇, 李想, 邓杰文, 何清澈. 基于流量振荡的窄矩形通道内临界热通量机理模型[J]. 化工学报, 2022, 73(7): 2962-2970.
Meiyue YAN, Jian DENG, Liangming PAN, Zaiyong MA, Xiang LI, Jiewen DENG, Qingche HE. Mechanism model of critical heat flux in narrow rectangular channel based on flow oscillations[J]. CIESC Journal, 2022, 73(7): 2962-2970.
参数 | 工况 |
---|---|
实验压力p/MPa | 1~4 |
窄缝宽度ε/mm | 1~5 |
加热长度 L/mm | 600 |
质量流速G/(kg/(m2·s)) | 350~2000 |
入口过冷度ΔTin,sub/K | 60~120 |
加热方式 | 单面加热 |
加热材料 | 不锈钢 |
流向 | 向上流动 |
工质 | 去离子水 |
表1 实验参数工况
Table 1 Range of experimental parameters
参数 | 工况 |
---|---|
实验压力p/MPa | 1~4 |
窄缝宽度ε/mm | 1~5 |
加热长度 L/mm | 600 |
质量流速G/(kg/(m2·s)) | 350~2000 |
入口过冷度ΔTin,sub/K | 60~120 |
加热方式 | 单面加热 |
加热材料 | 不锈钢 |
流向 | 向上流动 |
工质 | 去离子水 |
现有模型 | 具体项目 |
---|---|
Helmholtz不稳定性[ | 研究对象:下层流体密度高于上层流体密度,两流体交界面均与交界面平行,但速度不同,当两者相对速度超过临界值时,发生Helmholtz不稳定性 |
CHF机理:加热壁面上小气泡聚合形成大气泡,大气泡底部的微液层因蒸发而完全耗尽时发生沸腾危机,大气泡长度取决于Helmholtz不稳定性 | |
Taylor不稳定性[ | 研究对象:上层流体密度高于下层流体密度,讨论两流体受到垂直交界面的扰动时引起的不稳定现象 |
CHF机理:在池式沸腾中,临界热通量为以最危险波长为直径的气泡的蒸发热通量 |
表2 不稳定性模型
Table2 Instability models
现有模型 | 具体项目 |
---|---|
Helmholtz不稳定性[ | 研究对象:下层流体密度高于上层流体密度,两流体交界面均与交界面平行,但速度不同,当两者相对速度超过临界值时,发生Helmholtz不稳定性 |
CHF机理:加热壁面上小气泡聚合形成大气泡,大气泡底部的微液层因蒸发而完全耗尽时发生沸腾危机,大气泡长度取决于Helmholtz不稳定性 | |
Taylor不稳定性[ | 研究对象:上层流体密度高于下层流体密度,讨论两流体受到垂直交界面的扰动时引起的不稳定现象 |
CHF机理:在池式沸腾中,临界热通量为以最危险波长为直径的气泡的蒸发热通量 |
Ref. | Correlation | Ranges |
---|---|---|
[ | — | |
[ | G: 124—886 kg/(m2·s) ΔTin,sub: 6.6—52.5 K | |
[ | p: 0.1—0.5 MPa G: 400—1600 kg/(m2·s) ΔTin,sub: 20—60 K |
表3 汽化核心密度预测关系式
Table 3 Correlations of nucleate site density
Ref. | Correlation | Ranges |
---|---|---|
[ | — | |
[ | G: 124—886 kg/(m2·s) ΔTin,sub: 6.6—52.5 K | |
[ | p: 0.1—0.5 MPa G: 400—1600 kg/(m2·s) ΔTin,sub: 20—60 K |
1 | 潘良明. 核反应堆热工水力学基础[M]. 重庆: 重庆大学出版社, 2020. |
Pan L M. Thermal Hydraulic Fundamentals of Nuclear Reactors[M]. Chongqing: Chongqing University Press, 2020. | |
2 | Yan M Y, Ma Z Y, Pan L M, et al. An evaluation of critical heat flux prediction methods for the upward flow in a vertical narrow rectangular channel[J]. Progress in Nuclear Energy, 2021, 140: 103901. |
3 | Kim H, Moon J, Hong D J, et al. Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning[J]. Nuclear Engineering and Technology, 2021, 53(6): 1796-1809. |
4 | Boure J A, Bergles A E, Tong L S. Review of two-phase flow instability[J]. Nuclear Engineering and Design, 1973, 25(2): 165-192. |
5 | Mishima K, Nishihara H. The effect of flow direction and magnitude on CHF for low pressure water in thin rectangular channels[J]. Nuclear Engineering and Design, 1985, 86(2): 165-181. |
6 | Oudah S K. Experimental investigation of single and two-phase heat transfer performance in microchannels with surface modifications and multiple inlet [D]. South Carolina: University of South Carolina, 2021. |
7 | Qu W L, Mudawar I. Measurement and prediction of pressure drop in two-phase micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2737-2753. |
8 | Lin Y Q, Gao P Z, Chen X B, et al. Experimental investigation on instability characteristics of loss of heat sink accident in a natural circulation system[J]. Annals of Nuclear Energy, 2021, 155: 108143. |
9 | Fan Y F, Hassan I. Effect of inlet restriction on flow boiling heat transfer in a horizontal microtube[J]. Journal of Heat Transfer, 2013, 135(2): 1-9. |
10 | Maulbetsch J S. A study of system-induced instabilities in forced-convection flows with subcooled boiling[D]. Cambridge: Massachusetts Institute of Technology, 1965. |
11 | Kaya A, Özdemir M R, Keskinöz M, et al. The effects of inlet restriction and tube size on boiling instabilities and detection of resulting premature critical heat flux in microtubes using data analysis[J]. Applied Thermal Engineering, 2014, 65(1/2): 575-587. |
12 | Haas C, Meyer L, Schulenberg T. Flow instability and critical heat flux for flow boiling of water in a vertical annulus at low pressure[C]//Proceedings of ASME/JSME 2011 8th Thermal Engineering Joint Conference. Honolulu, Hawaii, USA, 2011. |
13 | Stoddard R M, Blasick A M, Ghiaasiaan S M, et al. Onset of flow instability and critical heat flux in thin horizontal annuli[J]. Experimental Thermal and Fluid Science, 2002, 26(1): 1-14. |
14 | Lee J, Jo D, Chae H, et al. The characteristics of premature and stable critical heat flux for downward flow boiling at low pressure in a narrow rectangular channel[J]. Experimental Thermal and Fluid Science, 2015, 69: 86-98. |
15 | Zhao D W, Su G H, Liang Z H, et al. Experimental research on transient critical heat flux in vertical tube under oscillatory flow condition[J]. International Journal of Multiphase Flow, 2011, 37(9): 1235-1244. |
16 | Ghione A, Noel B, Vinai P, et al. Criteria for onset of flow instability in heated vertical narrow rectangular channels at low pressure: an assessment study[J]. International Journal of Heat and Mass Transfer, 2017, 105: 464-478. |
17 | 陈娟, 周涛, 齐实, 等. 矩形通道自然循环流动不稳定性实验研究[J]. 核动力工程, 2017, 38(2): 51-55. |
Chen J, Zhou T, Qi S, et al. Experimental study of natural circulation flow instability in rectangular channels[J]. Nuclear Power Engineering, 2017, 38(2): 51-55. | |
18 | Sudo Y, Miyata K, Ikawa H, et al. Experimental study of differences in DNB heat flux between upflow and downflow in vertical rectangular channel[J]. Journal of Nuclear Science and Technology, 1985, 22(8): 604-618. |
19 | 于德海. 受限流道内CHF发生过程中的流动行为分析[D]. 哈尔滨: 哈尔滨工程大学, 2020. |
Yu D H. Analysis of CHF flow behavior in confined flow channels[D]. Harbin: Harbin Engineering University, 2020. | |
20 | 何海沙. 矩形窄通道内PM-CHF特性实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. |
He H S. Experimental study on PM-CHF in a narrow rectangular channel[D]. Harbin: Harbin Engineering University, 2019. | |
21 | 盛程, 周涛, 张蕾, 等. 窄矩形通道自然循环流动停滞与临界热流密度研究[J]. 核科学与工程, 2013, 33(1): 65-75. |
Sheng C, Zhou T, Zhang L, et al. Study on natural circulation flow stagnation and critical heat flux in narrow rectangular channel[J]. Nuclear Science and Engineering, 2013, 33(1): 65-75. | |
22 | Zhou J C, Ye T Z, Zhang D L, et al. Experimental study on vertically upward steam-water two-phase flow patterns in narrow rectangular channel[J]. Nuclear Engineering and Technology, 2021, 53(1): 61-68. |
23 | Zhang K, Zhu Z M, Shang B J, et al. Experimental investigation on flow regimes and transitions of steam-water two-phase flow in narrow rectangular horizontal channels[J]. Progress in Nuclear Energy, 2021, 131: 103601. |
24 | Yan M Y, Ren T T, Chen K L, et al. Visualized experiment of bubble behaviors in a vertical narrow rectangular channel under natural circulation condition[J]. Frontiers in Energy Research, 2018, 6: 105. |
25 | Ishii M, Hibiki T. Thermos-fluid Dynamics of Two-phase Flow[M]. 2nd ed. Berlin: Springer, 2010: 48-52. |
26 | Haramura Y, Katto Y. A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids[J]. International Journal of Heat and Mass Transfer, 1983, 26(3): 389-399. |
27 | 刘阳. 水电解中磁流体对气泡行为及两相流动特性的影响[D]. 重庆:重庆大学, 2021. |
Liu Y. Influence of magnetic fluid on bubble behavior and two-phase flow characteristics in water electrolysis [D]. Chongqing: Chongqing University, 2021. | |
28 | Yan M Y, He Q C, Ma Z Y, et al. Experimental investigation and a mechanical model of critical heat flux in a narrow rectangular channel[J]. Experimental Thermal and Fluid Science, 2021, 128: 110432. |
29 | 李少丹. 海洋条件下局部气泡行为及沸腾换热特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. |
Li S D. Study of local bubble behavior and boiling heat transfer characteristics under ocean condition[D]. Harbin: Harbin Engineering University, 2015. | |
30 | Luitjens J, Wu Q, Greenwood S, et al. Mechanistic CHF modeling for natural circulation applications in SMR[J]. Nuclear Engineering and Design, 2016, 310: 604-611. |
31 | Del Valle V H, Kenning D B R. Subcooled flow boiling at high heat flux[J]. International Journal of Heat and Mass Transfer, 1985, 28(10): 1907-1920. |
32 | Li S D, Tan S C, Xu C, et al. An experimental study of bubble sliding characteristics in narrow channel[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 89-99. |
33 | 闫美月. 竖直窄矩形通道内壁面热流分配模型的实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. |
Yan M Y. Experimental study of wall heat flux partitioning model in vertical rectangular narrow channel[D]. Harbin: Harbin Engineering University, 2019. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[5] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[6] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[11] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[12] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[13] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[14] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[15] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||