化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5355-5366.DOI: 10.11949/0438-1157.20221147
李永帅1(), 郑毅1, 李岚1, 李新爽1, 赵馨怡1, 潘慧1,2(), 凌昊1()
收稿日期:
2022-08-16
修回日期:
2022-12-08
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
潘慧,凌昊
作者简介:
李永帅(1998—),男,硕士研究生,liyongshuai801@163.com
基金资助:
Yongshuai LI1(), Yi ZHENG1, Lan LI1, Xinshuang LI1, Xinyi ZHAO1, Hui PAN1,2(), Hao LING1()
Received:
2022-08-16
Revised:
2022-12-08
Online:
2022-12-05
Published:
2023-01-17
Contact:
Hui PAN, Hao LING
摘要:
气相法聚乙烯工艺在冷凝模式操作下,液相在床层内部蒸发使流体流型转变为旋转型,升力的影响不可忽略。建立了气-液-固三相流聚乙烯流化床反应器CFD模型,并探究Saffman-Mei、Legendre-Magnaudet和Moraga三种不同升力模型对聚乙烯流化床反应器多相流体流动的影响。模拟结果表明,升力模型对于流化稳定后床层平均高度、反应器平均温度无明显影响,但在床层不同高度区域内颗粒相分布和低区域内温度分布存在差别。不同粒径固相颗粒在升力的影响下具有不同的流化过程,小粒径颗粒在流化过程中易产生较大的气泡,大粒径颗粒在壁面处的聚集现象更为明显。Saffman-Mei模型使得颗粒沿着壁面以及向较高床层运动更为明显,在低床层趋于温度较低;Saffman-Mei模型和Moraga模型具有相似的液相蒸发速率;Moraga模型的颗粒和气泡运动最为剧烈;Legendre-Magnaudet模型预测的床层压降最为准确,并且流化过程中的相分布和温度分布等更为均匀。
中图分类号:
李永帅, 郑毅, 李岚, 李新爽, 赵馨怡, 潘慧, 凌昊. 聚乙烯流化床反应器气-液-固流场中升力模型的影响研究[J]. 化工学报, 2022, 73(12): 5355-5366.
Yongshuai LI, Yi ZHENG, Lan LI, Xinshuang LI, Xinyi ZHAO, Hui PAN, Hao LING. Influence of lift model on gas-liquid-solid flow field in polyethylene fluidized bed reactor[J]. CIESC Journal, 2022, 73(12): 5355-5366.
参数设置 | 数值 |
---|---|
气相 | |
cp,g/(J·kg-1·K-1) | 1780 |
ρg/(kg·m-3) | 26.7 |
μg/(kg·m-1·s-1) | 1.4×10-5 |
kg/(W·m-1·K-1) | 3.18 ×10-2 |
扩散系数/(m2·s-1) | 4×10-7 |
液相 | |
直径/m | 8×10-5 m |
ρl /(kg·m-3) | 541 |
cp,l /(J·kg-1·K-1) | 2400 |
固相 | |
直径/m | 1×10-4、5×10-4、1×10-3 |
ρs/(kg·m-3) | 919 |
cp,s/(J·kg-1·K-1) | 2550 |
入口颗粒温度/K | 328 |
入口气相温度/K | 328 |
入口液相温度/K | 328 |
入口气相速度/(m·s-1) | 0.5928 |
入口液相速度/(m·s-1) | 0.5928 |
入口液相质量分数 | 0.1243% |
初始固相体积分数 | 0.5 |
初始床层高度/m | 3.5 |
压力/MPa | 2 |
动力学参数 | |
EA/(J·mol-1) | 50400 |
ED/(J·mol-1) | 1000 |
ΔH/(J·kg-1) | 3.843×106 |
ΔHvap/(J·kg-1) | 2.84×105 |
ρcat/(g·m-3) | 2.84×106 |
kp0/(m3·mol-1·s-1) | 4.49×106 |
kd0/(m3·mol-1·s-1) | 1.6×10-4 |
表1 气、液、固三相的性质及工业操作条件
Table 1 Physical properties of three phases and operation conditions from industrial data
参数设置 | 数值 |
---|---|
气相 | |
cp,g/(J·kg-1·K-1) | 1780 |
ρg/(kg·m-3) | 26.7 |
μg/(kg·m-1·s-1) | 1.4×10-5 |
kg/(W·m-1·K-1) | 3.18 ×10-2 |
扩散系数/(m2·s-1) | 4×10-7 |
液相 | |
直径/m | 8×10-5 m |
ρl /(kg·m-3) | 541 |
cp,l /(J·kg-1·K-1) | 2400 |
固相 | |
直径/m | 1×10-4、5×10-4、1×10-3 |
ρs/(kg·m-3) | 919 |
cp,s/(J·kg-1·K-1) | 2550 |
入口颗粒温度/K | 328 |
入口气相温度/K | 328 |
入口液相温度/K | 328 |
入口气相速度/(m·s-1) | 0.5928 |
入口液相速度/(m·s-1) | 0.5928 |
入口液相质量分数 | 0.1243% |
初始固相体积分数 | 0.5 |
初始床层高度/m | 3.5 |
压力/MPa | 2 |
动力学参数 | |
EA/(J·mol-1) | 50400 |
ED/(J·mol-1) | 1000 |
ΔH/(J·kg-1) | 3.843×106 |
ΔHvap/(J·kg-1) | 2.84×105 |
ρcat/(g·m-3) | 2.84×106 |
kp0/(m3·mol-1·s-1) | 4.49×106 |
kd0/(m3·mol-1·s-1) | 1.6×10-4 |
参数 | 数值 |
---|---|
入口边界条件 | 速度入口 |
出口边界条件 | 压力出口 |
壁面边界条件 | 气液相壁面无滑移,固相部分滑移 |
壁面热条件 | Adiabatic |
颗粒碰撞恢复系数 | 0.9 |
颗粒黏度 | 文献[ |
颗粒体积黏度 | 文献[ |
摩擦黏度 | 文献[ |
内摩擦角 | 30° |
固相填料极限 | 0.63 |
最大迭代次数 | 50 |
收敛标准 | 10-5 |
时间步长 (s) | 10-3 |
表2 模型参数
Table 2 Numerical parameters
参数 | 数值 |
---|---|
入口边界条件 | 速度入口 |
出口边界条件 | 压力出口 |
壁面边界条件 | 气液相壁面无滑移,固相部分滑移 |
壁面热条件 | Adiabatic |
颗粒碰撞恢复系数 | 0.9 |
颗粒黏度 | 文献[ |
颗粒体积黏度 | 文献[ |
摩擦黏度 | 文献[ |
内摩擦角 | 30° |
固相填料极限 | 0.63 |
最大迭代次数 | 50 |
收敛标准 | 10-5 |
时间步长 (s) | 10-3 |
图6 不同粒径颗粒在Saffman-Mei模型下流化过程中固相体积分数径向分布
Fig.6 Radial distribution of solid phase volume fraction in Saffman-Mei model fluidization process for different particle sizes
1 | 夏勇, 黄昌猛, 吕海霞, 等. 聚乙烯的结构、性能与应用[J]. 橡塑技术与装备, 2017, 43(16): 42-45. |
Xia Y, Huang C M, Lyu H X, et al. Structure, properties and applications of polyethylene[J]. China Rubber/Plastics Technology and Equipment, 2017, 43(16): 42-45. | |
2 | Soares J B P, McKenna T F. Polyolefin Reaction Engineering[M]. Weinheim: Wiley-VCH, 2012. |
3 | 孙海涛. 气相流化床法聚乙烯工艺技术比较[J]. 石化技术, 2019, 26(2): 133. |
Sun H T. Comparison of polyethylene process technologies by gas-phase fluidized bed process[J]. Petrochemical Industry Technology, 2019, 26(2): 133. | |
4 | Yang Y, Yang J, Chen W, et al. Instability analysis of the fluidized bed for ethylene polymerization with condensed mode operation[J]. Industrial & Engineering Chemistry Research, 2002, 41(10): 2579-2584. |
5 | Pan H, Liang X F, Luo Z H. CFD modeling of the gas-solid two-fluid flow in polyethylene FBRs: from traditional operation to super-condensed mode[J]. Advanced Powder Technology, 2016, 27(4): 1494-1505. |
6 | Zhou Y F, Wang J D, Yang Y R, et al. Modeling of the temperature profile in an ethylene polymerization fluidized-bed reactor in condensed-mode operation[J]. Industrial & Engineering Chemistry Research, 2013, 52(12): 4455-4464. |
7 | Zhou Y F, Shi Q, Huang Z L, et al. Effects of liquid action mechanisms on hydrodynamics in liquid-containing gas-solid fluidized bed reactor[J]. Chemical Engineering Journal, 2016, 285: 121-127. |
8 | Zhou Y F, Shi Q, Huang Z L, et al. Realization and control of multiple temperature zones in liquid-containing gas-solid fluidized bed reactor[J]. AIChE Journal, 2016, 62(5): 1454-1466. |
9 | Zhou Y F, Shi Q, Huang Z L, et al. Effects of interparticle forces on fluidization characteristics in liquid-containing and high-temperature fluidized beds[J]. Industrial & Engineering Chemistry Research, 2013, 52(47): 16666-16674. |
10 | 范小强, 韩国栋, 黄正梁, 等. 气相法聚乙烯工艺冷凝态操作模式的稳定性和动态行为[J]. 化工学报, 2018, 69(2): 779-791. |
Fan X Q, Han G D, Huang Z L, et al. Stability and dynamic behaviors of gas-phase ethylene polymerization process under condensed mode operation[J]. CIESC Journal, 2018, 69(2): 779-791. | |
11 | Pan H, Liang X F, Zhu L T, et al. Important analysis of liquid vaporization modeling scheme in computational fluid dynamics modeling of gas-liquid-solid polyethylene fluidized bed reactors[J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 10199-10213. |
12 | 张仪, 李兵, 白玉龙, 等. 液固流态化动态过程中相间作用力的数值模拟及实验验证[J]. 化工学报, 2020, 71(11): 5129-5139. |
Zhang Y, Li B, Bai Y L, et al. Numerical simulation and experimental validation of inter-phase forces in dynamic process of liquid-solid fluidization[J]. CIESC Journal, 2020, 71(11): 5129-5139. | |
13 | Pang M J, Wei J J. Analysis of drag and lift coefficient expressions of bubbly flow system for low to medium Reynolds number[J]. Nuclear Engineering and Design, 2011, 241(6): 2204-2213. |
14 | 毛在砂. 颗粒群研究: 多相流多尺度数值模拟的基础[J]. 过程工程学报, 2008, 8(4): 645-659. |
Mao Z S. Knowledge on particle swarm: the important basis for multi-scale numerical simulation of multiphase flows[J]. The Chinese Journal of Process Engineering, 2008, 8(4): 645-659. | |
15 | Wang Q G, Yao W. Computation and validation of the interphase force models for bubbly flow[J]. International Journal of Heat and Mass Transfer, 2016, 98: 799-813. |
16 | Yao Y, He Y J, Luo Z H, et al. 3D CFD-PBM modeling of the gas-solid flow field in a polydisperse polymerization FBR: the effect of drag model[J]. Advanced Powder Technology, 2014, 25(5): 1474-1482. |
17 | Hibiki T, Ishii H. Lift force in bubbly flow systems[J]. Chemical Engineering Science, 2007, 62(22): 6457-6474. |
18 | Zhang X B, Yan W C, Luo Z H. CFD-PBM simulation of bubble columns: sensitivity analysis of the nondrag forces[J]. Industrial & Engineering Chemistry Research, 2020, 59(41): 18674-18682. |
19 | Yamoah S, Raúl M C, Guillem M, et al. Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow[J]. Chemical Engineering Research and Design, 2015, 98: 17-35. |
20 | Koerich D M, Lopes G C, Rosa L M. Investigation of phases interactions and modification of drag models for liquid-solid fluidized bed tapered bioreactors[J]. Powder Technology, 2018, 339: 90-101. |
21 | Jin D, Xiong J B, Cheng X. Investigation on interphase force modeling for vertical and inclined upward adiabatic bubbly flow[J]. Nuclear Engineering and Design, 2019, 350: 43-57. |
22 | Zhang X, Yu T, Cong T L, et al. Effects of interaction models on upward subcooled boiling flow in annulus[J]. Progress in Nuclear Energy, 2018, 105: 61-75. |
23 | Schiller L. Uber Die grundlegenden berechnungen Bei der schwerkraftaufbereitung[J]. Z. Vereines Deutscher Inge., 1933, 77:318-321. |
24 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. New York: Academic Press, 1994. |
25 | Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193. |
26 | Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds: kinetic theory approach[R]. Chicago: Illinois Inst. of Tech., 1991. |
27 | Chapman S, Cowling T G. The Mathematical Theory of Non-uniform Gases: Notes Added in 1951[M]. New York: Cambridge University Press, 1953. |
28 | Lun C K K, Savage S B, Jeffrey D J, et al. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield[J]. Journal of Fluid Mechanics, 1984, 140: 223-256. |
29 | Boemer A, Qi H, Renz U. Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed[J]. International Journal of Multiphase Flow, 1997, 23(5): 927-944. |
30 | Schaeffer D G. Instability in the evolution equations describing incompressible granular flow[J]. Journal of Differential Equations, 1987, 66(1): 19-50. |
31 | Saffman P G. The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics, 1965, 22(2): 385-400. |
32 | Mei R W, Klausner J F. Shear lift force on spherical bubbles[J]. International Journal of Heat and Fluid Flow, 1994, 15(1): 62-65. |
33 | Legendre D, Magnaudet J. The lift force on a spherical bubble in a viscous linear shear flow[J]. Journal of Fluid Mechanics, 1998, 368: 81-126. |
34 | Moraga F J, Bonetto F J, Lahey R T. Lateral forces on spheres in turbulent uniform shear flow[J]. International Journal of Multiphase Flow, 1999, 25(6/7): 1321-1372. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[5] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[6] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[7] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[10] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[11] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[12] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[13] | 郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
[14] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[15] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||