化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4383-4396.DOI: 10.11949/0438-1157.20231003
张旭东(), 刘彦花, 申峻(), 王玉高, 刘刚, 牛艳霞
收稿日期:
2023-09-26
修回日期:
2023-10-29
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
申峻
作者简介:
张旭东(1994—),男,博士研究生,1014783403@qq.com
基金资助:
Xudong ZHANG(), Yanhua LIU, Jun SHEN(), Yugao WANG, Gang LIU, Yanxia NIU
Received:
2023-09-26
Revised:
2023-10-29
Online:
2023-11-25
Published:
2024-01-22
Contact:
Jun SHEN
摘要:
离子液体(ILs)和低共熔溶剂(DESs)作为一类新型的绿色溶剂,由于其独特的物理化学性质,在混合物分离方面已经受到了研究者的广泛关注,因此逐渐成为绿色化学领域的研究重点。针对特定的分离过程,选择合适的溶剂是非常重要的,然而,由于ILs和DESs种类较多,结构复杂,通过实验的方法逐一进行筛选费时费力、成本高,且几乎不可能找到最优选择,因此应用理论计算模型对ILs和DESs进行筛选是非常有必要的。真实溶剂类导体屏蔽模型(COSMO-RS模型)是一种由量子化学计算与统计热力学方法相结合的预测模型,它可以在不需要实验数据的情况下预测液体混合物的热力学性质,已经被研究者广泛用作各种分离问题的快速筛选工具。整理了应用COSMO-RS模型筛选ILs/DESs用于各种油中酚类、含氮化合物、含硫化合物、萜类化合物、天然维生素E的萃取分离,以及CO2捕获和共沸混合物等的分离过程,表明COSMO-RS模型用于特定混合物萃取溶剂的筛选是快速有效的,可为难分离混合物分离过程中ILs/DESs的预筛选提供有价值的参考。
中图分类号:
张旭东, 刘彦花, 申峻, 王玉高, 刘刚, 牛艳霞. COSMO-RS模型在离子液体/低共熔溶剂筛选中的应用研究进展[J]. 化工学报, 2023, 74(11): 4383-4396.
Xudong ZHANG, Yanhua LIU, Jun SHEN, Yugao WANG, Gang LIU, Yanxia NIU. Recent progress on application of COSMO-RS model in screening of ionic liquids/deep eutectic solvents[J]. CIESC Journal, 2023, 74(11): 4383-4396.
1 | Wang B S, Qin L, Mu T C, et al. Are ionic liquids chemically stable?[J]. Chemical Reviews, 2017, 117(10): 7113-7131. |
2 | Chen Y, Yu D K, Liu Z H, et al. Thermal, chemical, electrochemical, radiolytic and biological stability of ionic liquids and deep eutectic solvents[J]. New Journal of Chemistry, 2022, 46(37): 17640-17668. |
3 | Xue Z M, Qin L, Jiang J Y, et al. Thermal, electrochemical and radiolytic stabilities of ionic liquids[J]. Physical Chemistry Chemical Physics, 2018, 20(13): 8382-8402. |
4 | Liu S Z, Yu D K, Chen Y, et al. High-resolution thermogravimetric analysis is required for evaluating the thermal stability of deep eutectic solvents[J]. Industrial & Engineering Chemistry Research, 2022, 61(38): 14347-14354. |
5 | Cao Y Y, Mu T C. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(20): 8651-8664. |
6 | Chen W J, Xue Z M, Wang J F, et al. Investigation on the thermal stability of deep eutectic solvents[J]. Acta Physico-Chimica Sinica, 2018, 34(8): 904-911. |
7 | Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060-11082. |
8 | Chen Y, Mu T C. Revisiting greenness of ionic liquids and deep eutectic solvents[J]. Green Chemical Engineering, 2021, 2(2): 174-186. |
9 | Zhang X D, Wang J Y, Shen J, et al. Highly efficient extraction of indole from model wash oil by using environmentally benign deep eutectic solvents[J]. Separation and Purification Technology, 2022, 285: 120381. |
10 | Yan W W, Wei X Y, Wang M X, et al. Overview: effective separation of oxygen-, nitrogen-, and sulfur-containing aromatics in high-temperature coal tar by ionic liquids and deep eutectic solvents: experimental and computational[J]. Industrial & Engineering Chemistry Research, 2022, 61(13): 4481-4492. |
11 | Zhang X D, Zhao W B, Shen J, et al. Theoretical and experimental exploration for efficient separation of carbazole from anthracene oil with quaternary ammonium salts via forming deep eutectic solvents[J]. Journal of Molecular Liquids, 2022, 368: 120831. |
12 | Zhao X, Yang Q W, Xu D, et al. Design and screening of ionic liquids for C2H2/C2H4 separation by COSMO-RS and experiments[J]. AIChE Journal, 2015, 61(6): 2016-2027. |
13 | Foorginezhad S, Yu G Q, Ji X Y. Reviewing and screening ionic liquids and deep eutectic solvents for effective CO2 capture[J]. Frontiers in Chemistry, 2022, 10: 951951. |
14 | Zhang T, Doert T, Wang H, et al. Inorganic synthesis based on reactions of ionic liquids and deep eutectic solvents[J]. Angewandte Chemie International Edition, 2021, 60(41): 22148-22165. |
15 | Leng Y, Wang J, Zhu D R, et al. Heteropolyanion-based ionic liquids: reaction-induced self-separation catalysts for esterification[J]. Angewandte Chemie, 2009, 121(1): 174-177. |
16 | Chen C, Zhang X D, Tang Q, et al. Understanding the catalytic behavior of ionic liquids in tetralin alkylation with α-olefins through experiment and COSMO-RS model[J]. Chemical Engineering Science, 2023, 276: 118794. |
17 | Zhang X M, Xiong W J, Shi M Z, et al. Task-specific ionic liquids as absorbents and catalysts for efficient capture and conversion of H2S into value-added mercaptan acids[J]. Chemical Engineering Journal, 2021, 408: 127866. |
18 | Li Q B, Jiang J Y, Li G F, et al. The electrochemical stability of ionic liquids and deep eutectic solvents[J]. Science China Chemistry, 2016, 59(5): 571-577. |
19 | Uhl M, Geng T, Schuster P A, et al. Combining deep eutectic solvents with TEMPO-based polymer electrodes: influence of molar ratio on electrode performance[J]. Angewandte Chemie International Edition, 2023, 62(2): e202214927. |
20 | Parnham E R, Drylie E A, Wheatley P S, et al. Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents[J]. Angewandte Chemie International Edition, 2006, 45(30): 4962-4966. |
21 | Ma Z, Yu J H, Dai S. Preparation of inorganic materials using ionic liquids[J]. Advanced Materials, 2010, 22(2): 261-285. |
22 | Paduszyński K, Domańska U. Thermodynamic modeling of ionic liquid systems: development and detailed overview of novel methodology based on the PC-SAFT[J]. The Journal of Physical Chemistry B, 2012, 116(16): 5002-5018. |
23 | Klamt A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena[J]. The Journal of Physical Chemistry, 1995, 99(7): 2224-2235. |
24 | Eckert F, Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach[J]. AIChE Journal, 2002, 48(2): 369-385. |
25 | Gouveia A S L, Oliveira F S, Kurnia K A, et al. Deep eutectic solvents as azeotrope breakers: liquid-liquid extraction and COSMO-RS prediction[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5640-5650. |
26 | Jiang C H, Cheng H Y, Qin Z X, et al. COSMO-RS prediction and experimental verification of 1, 5-pentanediamine extraction from aqueous solution by ionic liquids[J]. Green Energy & Environment, 2021, 6(3): 422-431. |
27 | Paduszyński K. An overview of the performance of the COSMO-RS approach in predicting the activity coefficients of molecular solutes in ionic liquids and derived properties at infinite dilution[J]. Physical Chemistry Chemical Physics, 2017, 19(19): 11835-11850. |
28 | Cao Y Y, Wu Z X, Zhang Y, et al. Screening of alternative solvent ionic liquids for artemisinin: COSMO-RS prediction and experimental verification[J]. Journal of Molecular Liquids, 2021, 338: 116778. |
29 | Liu Q, Liu Q, Zhang X L. Separation of m-cresol from model oil by pyridinium-based ionic liquids: COSMO-RS screening, experimental study, and process simulation[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108874. |
30 | Xu X, Li A, Zhang T, et al. Efficient extraction of phenol from low-temperature coal tar model oil via imidazolium-based ionic liquid and mechanism analysis[J]. Journal of Molecular Liquids, 2020, 306: 112911. |
31 | Yao C F, Hou Y C, Ren S H, et al. Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents[J]. Chemical Engineering Journal, 2017, 326: 620-626. |
32 | Liu Q, Zhang X L, Li W. Separation of m-cresol from aromatic hydrocarbon and alkane using ionic liquids via hydrogen bond interaction[J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2675-2686. |
33 | 刘潜, 张香兰, 李志平, 等. 油酚分离过程低共熔溶剂的筛选及萃取性能研究[J]. 化工学报, 2022, 73(9): 3915-3928. |
Liu Q, Zhang X L, Li Z P, et al. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation[J]. CIESC Journal, 2022, 73(9): 3915-3928. | |
34 | Liu Q, Zhang X L. Systematic method of screening deep eutectic solvents as extractive solvents for m-cresol/cumene separation[J]. Separation and Purification Technology, 2022, 291: 120853. |
35 | Liu Q A, Zhang X L. Multiscale screening of deep eutectic solvents for efficient extraction of m-cresol from model coal tar[J]. ACS Omega, 2022, 7(38): 34485-34494. |
36 | 刘潜, 张香兰, 李志平, 等. 油酚分离过程离子液体萃取溶剂的多尺度筛选[J]. 化工学报, 2022, 73(11): 5011-5024. |
Liu Q, Zhang X L, Li Z P, et al. Multiscale screening of ionic liquids as extractive solvents for oil-hydroxybenzene separation[J]. CIESC Journal, 2022, 73(11): 5011-5024. | |
37 | Gao P, Zhang J, Guo Z Q, et al. Experimental and quantum chemical calculations investigations of morpholine-based ionic liquids as extractants for efficient extraction of nitrogen heterocyclic neutral compounds[J]. Fuel, 2023, 333: 126446. |
38 | Ali M C, Yang Q W, Fine A A, et al. Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents[J]. Green Chemistry, 2016, 18(1): 157-164. |
39 | Anantharaj R, Banerjee T. COSMO-RS-based screening of ionic liquids as green solvents in denitrification studies[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8705-8725. |
40 | Hizaddin H F, Hadj-Kali M K, Ramalingam A, et al. Extraction of nitrogen compounds from diesel fuel using imidazolium- and pyridinium-based ionic liquids: experiments, COSMO-RS prediction and NRTL correlation[J]. Fluid Phase Equilibria, 2015, 405: 55-67. |
41 | Salleh M Z M, Hadj-Kali M K, Hizaddin H F, et al. Extraction of nitrogen compounds from model fuel using 1-ethyl-3-methylimidazolium methanesulfonate[J]. Separation and Purification Technology, 2018, 196: 61-70. |
42 | Hizaddin H F, Ramalingam A, Ali Hashim M, et al. Evaluating the performance of deep eutectic solvents for use in extractive denitrification of liquid fuels by the conductor-like screening model for real solvents[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3470-3487. |
43 | Abro R, Kiran N, Ahmed S, et al. Extractive desulfurization of fuel oils using deep eutectic solvents—a comprehensive review[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107369. |
44 | Ibrahim M H, Hayyan M, Ali Hashim M, et al. The role of ionic liquids in desulfurization of fuels: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1534-1549. |
45 | Gao S R, Chen X C, Abro R, et al. Desulfurization of fuel oil: conductor-like screening model for real solvents study on capacity of ionic liquids for thiophene and dibenzothiophene[J]. Industrial & Engineering Chemistry Research, 2015, 54(38): 9421-9430. |
46 | Anantharaj R, Banerjee T. COSMO-RS based predictions for the desulphurization of diesel oil using ionic liquids: effect of cation and anion combination[J]. Fuel Processing Technology, 2011, 92(1): 39-52. |
47 | Song Z, Zhang J J, Zeng Q, et al. Effect of cation alkyl chain length on liquid-liquid equilibria of {ionic liquids + thiophene + heptane}: COSMO-RS prediction and experimental verification[J]. Fluid Phase Equilibria, 2016, 425: 244-251. |
48 | Cheng H Y, Liu C Y, Zhang J J, et al. Screening deep eutectic solvents for extractive desulfurization of fuel based on COSMO-RS model[J]. Chemical Engineering and Processing-Process Intensification, 2018, 125: 246-252. |
49 | Song Z, Hu X T, Zhou Y G, et al. Rational design of double salt ionic liquids as extraction solvents: separation of thiophene/n-octane as example[J]. AIChE Journal, 2019, 65(8): e16625. |
50 | Song Z, Zhou T, Qi Z W, et al. Systematic method for screening ionic liquids as extraction solvents exemplified by an extractive desulfurization process[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3382-3389. |
51 | Qin Z X, Cheng H Y, Song Z, et al. Selection of deep eutectic solvents for extractive deterpenation of lemon essential oil[J]. Journal of Molecular Liquids, 2022, 350: 118524. |
52 | Ozturk B, Gonzalez-Miquel M. Alkanediol-based deep eutectic solvents for isolation of terpenoids from citrus essential oil: experimental evaluation and COSMO-RS studies[J]. Separation and Purification Technology, 2019, 227: 115707. |
53 | Qin L, Zhang J N, Cheng H Y, et al. Selection of imidazolium-based ionic liquids for vitamin E extraction from deodorizer distillate[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(2): 583-590. |
54 | Cheng H Y, Li J S, Wang J W, et al. Enhanced vitamin E extraction selectivity from deodorizer distillate by a biphasic system: a COSMO-RS and experimental study[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5547-5554. |
55 | Cheng J E, Qin H, Cheng H Y, et al. Rational screening of deep eutectic solvents for the direct extraction of α-tocopherol from deodorized distillates[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(25): 8216-8227. |
56 | Liu Y R, Dai Z X, Zhang Z B, et al. Ionic liquids/deep eutectic solvents for CO2 capture: reviewing and evaluating[J]. Green Energy & Environment, 2021, 6(3): 314-328. |
57 | Islam N, Khan H W, Gari A A, et al. Screening of ionic liquids as sustainable greener solvents for the capture of greenhouse gases using COSMO-RS approach: computational study[J]. Fuel, 2022, 330: 125540. |
58 | Farahipour R, Mehrkesh A, Karunanithi A T. A systematic screening methodology towards exploration of ionic liquids for CO2 capture processes[J]. Chemical Engineering Science, 2016, 145: 126-132. |
59 | Zhang X C, Liu Z P, Wang W C. Screening of ionic liquids to capture CO2 by COSMO-RS and experiments[J]. AIChE Journal, 2008, 54(10): 2717-2728. |
60 | Biswas R. Molecular dynamics simulations and COSMO-RS method for CO2 capture in imidazolium and pyrrolidinium-based room-temperature ionic liquids[J]. Journal of Molecular Modeling, 2022, 28(8): 231. |
61 | Lei Z G, Chen B H, Li C Y, et al. Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids[J]. Chemical Reviews, 2008, 108(4): 1419-1455. |
62 | 牟天成, Gmehling Jürgen. 真实溶剂似导体屏蔽模型(COSMO-RS)[J]. 化学进展, 2008, 20(10): 1487-1494. |
Mu T C, Gmehling J. Conductor-like screening model for real solvents(COSMO-RS)[J]. Progress in Chemistry, 2008, 20(10): 1487-1494. | |
63 | Han J L, Dai C N, Yu G Q, et al. Parameterization of COSMO-RS model for ionic liquids[J]. Green Energy & Environment, 2018, 3(3): 247-265. |
64 | Dong Y C, Huang S A, Guo Y Y, et al. COSMO-UNIFAC model for ionic liquids[J]. AIChE Journal, 2020, 66(1): e16787. |
65 | Zhu R S, Taheri M, Zhang J E, et al. Extension of the COSMO-UNIFAC thermodynamic model[J]. Industrial & Engineering Chemistry Research, 2020, 59(4): 1693-1701. |
66 | Zhu R S, Gui C M, Li G X, et al. Modified COSMO-UNIFAC model for ionic liquid-CO2 systems and molecular dynamic simulation[J]. AIChE Journal, 2022, 68(7): e17724. |
67 | Song Z, Hu X T, Wu H Y, et al. Systematic screening of deep eutectic solvents as sustainable separation media exemplified by the CO2 capture process[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 8741-8751. |
68 | Alioui O, Benguerba Y, Alnashef I M. Investigation of the CO2-solubility in deep eutectic solvents using COSMO-RS and molecular dynamics methods[J]. Journal of Molecular Liquids, 2020, 307: 113005. |
69 | Liu Y R, Yu H, Sun Y H, et al. Screening deep eutectic solvents for CO2 capture with COSMO-RS[J]. Frontiers in Chemistry, 2020, 8: 82. |
70 | Lei Z G, Li C Y, Chen B H. Extractive distillation: a review[J]. Separation & Purification Reviews, 2003, 32(2): 121-213. |
71 | Lei Z G, Chen B H, Ding Z W. Azeotropic distillation[M]//Special Distillation Processes. Amsterdam: Elsevier, 2005: 145-177. |
72 | Rodríguez N R, González A S B, Tijssen P M A, et al. Low transition temperature mixtures (LTTMs) as novel entrainers in extractive distillation[J]. Fluid Phase Equilibria, 2015, 385: 72-78. |
73 | Lei Z G, Dai C N, Zhu J Q, et al. Extractive distillation with ionic liquids: a review[J]. AIChE Journal, 2014, 60(9): 3312-3329. |
74 | Neubauer M, Wallek T, Lux S. Deep eutectic solvents as entrainers in extractive distillation—a review[J]. Chemical Engineering Research and Design, 2022, 184: 402-418. |
75 | Wang X G, Xu H J, Zou Y M, et al. Mechanistic insight into separation of benzene and cyclohexane by extractive distillation using deep eutectic solvent as entrainer[J]. Journal of Molecular Liquids, 2022, 368: 120780. |
76 | Malik H, Khan H W, Hassan Shah M U, et al. Screening of ionic liquids as green entrainers for ethanol water separation by extractive distillation: COSMO-RS prediction and Aspen Plus simulation[J]. Chemosphere, 2023, 311: 136901. |
77 | Boli E, Voutsas E. Ionic liquids as entrainers for the separation of azeotropic mixtures: experimental measurements and COSMO-RS predictions[J]. Chemical Engineering Science, 2020, 219: 115579. |
78 | Li T T, Yang Q, Ding H R, et al. Amino acid based ionic liquids as additives for the separation of an acetonitrile and water azeotropic mixture: COSMO-RS prediction and experimental verification[J]. Industrial & Engineering Chemistry Research, 2015, 54(48): 12143-12149. |
79 | Li J L, Yang X Q, Chen K X, et al. Sifting ionic liquids as additives for separation of acetonitrile and water azeotropic mixture using the COSMO-RS method[J]. Industrial & Engineering Chemistry Research, 2012, 51(27): 9376-9385. |
80 | Dong Y C, Yang Q C, Li Z W, et al. Extractive distillation of the benzene and acetonitrile mixture using an ionic liquid as the entrainer[J]. Green Energy & Environment, 2021, 6(3): 444-451. |
81 | 张志刚, 张德彪, 张亲亲, 等. 基于COSMO-RS方法筛选离子液体分离乙酸乙酯-乙腈共沸物[J]. 化工学报, 2019, 70(1): 146-153. |
Zhang Z G, Zhang D B, Zhang Q Q, et al. Screening of ionic liquids for separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS[J]. CIESC Journal, 2019, 70(1): 146-153. | |
82 | Dhanalakshmi J, Sai P S T, Balakrishnan A R. Study of ionic liquids as entrainers for the separation of methyl acetate-methanol and ethyl acetate-ethanol systems using the COSMO-RS model[J]. Industrial & Engineering Chemistry Research, 2013, 52(46): 16396-16405. |
83 | Li H, Sun G L, Li D Y, et al. Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid[J]. Green Energy & Environment, 2021, 6(3): 329-338. |
84 | Hadj-Kali M K, Hizaddin H F, Wazeer I, et al. Liquid-liquid separation of azeotropic mixtures of ethanol/alkanes using deep eutectic solvents: COSMO-RS prediction and experimental validation[J]. Fluid Phase Equilibria, 2017, 448: 105-115. |
85 | Zhang Y Q, Zhang Q Q, Xin H, et al. COSMO-RS prediction, liquid-liquid equilibrium experiment and quantum chemistry calculation for the separation of n-butanol and n-heptane system using ionic liquids[J]. The Journal of Chemical Thermodynamics, 2022, 167: 106719. |
86 | Lyu Z X, Zhou T, Chen L F, et al. Reprint of: simulation based ionic liquid screening for benzene-cyclohexane extractive separation[J]. Chemical Engineering Science, 2014, 115: 186-194. |
87 | Sun D Z, Feng H S, Xin F, et al. Evaluation of COSMO-RS model for the LLE prediction of benzene plus cyclohexane plus ionic liquid system[J]. The Journal of Chemical Thermodynamics, 2020, 145: 106032. |
88 | Salleh M Z M, Hadj-Kali M K, Hashim M A, et al. Ionic liquids for the separation of benzene and cyclohexane-COSMO-RS screening and experimental validation[J]. Journal of Molecular Liquids, 2018, 266: 51-61. |
89 | Salleh Z, Wazeer I, Mulyono S, et al. Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents- COSMO-RS screening and experimental validation[J]. The Journal of Chemical Thermodynamics, 2017, 104: 33-44. |
90 | Zhang W X, Lei Z G, Wang Y, et al. Molecular mechanism and process of efficient separation of benzene and cyclohexane using a low-cost deep eutectic solvent[J]. Chemical Engineering Science, 2023, 279: 118963. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[9] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[10] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[11] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[12] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[13] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[14] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[15] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1032
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 828
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||