[1] |
Keenan J H, Neumann E P, Lustwerk F. An investigation of ejector design by analysis and experiment[J]. Applied Mechanics, 1950, 72: 299-309.
|
[2] |
徐海涛, 桑芝富. 蒸汽喷射器喷射系数计算的热力学模型[J]. 化工学报, 2004, 55(5): 704-710.Xu H T, Sang Z F. Thermodynamic models for calculating entrainment ratio of steam-jet ejector[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(5): 704-710.
|
[3] |
王菲, 沈胜强. 新型太阳能双喷射制冷系统的可用能效率分析[J]. 化工学报, 2009, 60(3): 553-559.Wang F, Shen S Q. Exergy analysis of novel solar bi-ejector refrigeration system[J]. CIESC Journal, 2009, 60(3): 553-559.
|
[4] |
王菲, 沈胜强. 不同制冷剂喷射制冷性能计算分析[J]. 化工学报, 2010, 61(2): 275-280. Wang F, Shen S Q. Calculation and analysis for an ejector refrigeration system with various refrigerants[J]. CIESC Journal, 2010, 61(2): 275-280.
|
[5] |
Huang B J, Jiang C B, Hu F L. Ejector performance characteristics and design analysis of jet refrigeration system[J]. Engineering for Gas Turbines Power, 1985, 107: 792-802.
|
[6] |
Huang B J, Chang J M. Empirical correlation for ejector design[J]. Refrigeration, 1999, 22: 379-388.
|
[7] |
Riffat S B, Omer S A. CFD modeling and experimental investigation of an ejector refrigeration system using methanol as the working fluid[J]. Energy Research, 2001, 25: 115-128.
|
[8] |
WANG X D, DONG J L. Numerical study on the performances of steam-jet vacuum pump at different operating conditions[J]. Vacuum, 2010, 84(11): 1341-1346.
|
[9] |
Sriveerakul T, Aphormratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics(Ⅰ): Validation of the CFD results[J]. Thermal Sciences, 2007, 46: 812-822.
|
[10] |
季建刚, 倪海, 黎立新, 等. 蒸汽喷射压缩器的变工况特性模拟与分析[J]. 化工学报, 2008, 59(3): 557-561. Ji J G, Ni H, Li L X, et al. Performance simulation and analysis of steam ejector under different operating condition[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(3): 557- 561.
|
[11] |
马昕霞, 袁益, 刘聿拯. 一种新型多喷嘴汽-液喷射器的性能[J]. 化工学报, 2011, 62(5): 1258-1263. Ma X X, Yuan Y, Liu Y Z. Performance of new type multi-nozzle steam-water ejector[J]. CIESC Journal, 2011, 62(5): 1258-1263.
|
[12] |
Zhu Y H, Cai W J, Wen C Y, et al. Numerical investigation of geometry parameters for design of high performance ejectors[J]. Applied Thermal Engineering, 2009, 29: 898-905.
|
[13] |
MyoungKuk J, Tony U, JuSik W, et al. CFD investigation on the flow structure inside thermo vapor compressor[J]. Energy, 2010, 35: 2694-2702.
|
[14] |
Wu H Q, Liu Z L, Han B, et al. Numerical investigation of the influences of mixing chamber geometries on steam ejector performance[J]. Desalination, 2014, 353: 15-20.
|
[15] |
Natthawut R, Satha A, Thanarath S. Experimental studies of a steam jet refrigeration cycle: effect of the primary nozzle geometries to system performance[J]. Experimental Thermal and Fluid Science, 2011, 35: 676-683.
|
[16] |
沈胜强, 张琨, 刘佳, 等. 喷嘴可调式喷射器性能的实验研究[J]. 化工学报, 2009, 60(6): 1398-1401. Shen S Q, Zhang K, Liu J, et al. Experimental investigation on performance of adjustable ejector[J]. CIESC Journal, 2009, 60(6): 1398-1401.
|
[17] |
魏晋, 唐黎明, 亓海明, 等. 混合室直径对带喷射器的跨临界CO2热泵性能影响[J]. 化工学报, 2016, 67(5): 1719-1724. Wei J, Tang L M, Qi H M, et al. Effect of mixing chamber diameter on performance of transcritical CO2 heat pump system with ejector[J]. CIESC Journal, 2016, 67 (5): 1719-1724.
|
[18] |
沈胜强, 曲晓萍, 张博. 气-液喷射器工作参数的数值模拟[J]. 太阳能学报, 2006, 27(1): 106-110.SHEN S Q, QU X P, ZHANG B. Numerical simulation on process parameters in gas-liquid ejector[J]. Acta Energiae Solaris Sinica, 2006, 27(1): 106-110.
|
[19] |
张军强. 蒸汽喷射凝结流动模拟研究[D]. 锦州: 辽宁工业大学, 2014.ZHANG J Q.Simulation study on steam jet condensation flow[D]. Jinzhou: Liaoning University of Technology, 2014.
|
[20] |
Wang X D, Dong J L, Li A, et al. Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance[J]. Energy, 2014, 78: 205-211.
|
[21] |
Navid S, Masoud B, Majid S. Numerical assessment of steam nucleation on thermodynamic performance of steam ejectors[J]. Applied Thermal Engineering, 2013, 52: 449-459.
|
[22] |
Ariafar K, Buttsworth D, Adoori G, et al. Mixing layer effects on the entrainment ratio in steam ejectors through ideal gas computational simulations[J]. Energy, 2016, 95: 380-392.
|
[23] |
Ruangtrakoon N, Thongtip T, Aphornratana S, et al. CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle[J]. Thermal Sciences, 2013, 63: 133-145.
|
[24] |
Subramanian G, Natarajan S K, Adhimoulame K, et al. Comparison of numerical and experimental investigations of jet ejector with blower[J]. Thermal Sciences, 2014, 84: 134-142.
|
[25] |
Vineet V, Chandra, Ahmed M R. Experimental and computational studies on a steam jet refrigeration system with constant area and variable area ejectors[J]. Energy Conversion and Management, 2014, 79: 377-386.
|
[26] |
VARGS S, OLIVEURA A C, MA X L, et al. Experimental and numerical analysis of a variable area ratio steam ejector[J]. Refrigeration, 2011, 34: 1668-1675.
|
[27] |
LI X C, WANG T, Benjamin D. Numerical analysis of the performance of a thermal ejector in a steam evaporator[J]. Applied Thermal Engineering, 2010, 30: 2708-2717.
|
[28] |
Varga S, Oliveira A C, Diaconu B. Numerical assessment of steam ejector efficiencies using CFD[J]. Refrigeration, 2009, 32: 1203-1211.
|
[29] |
YANG X, LONG X, YAO X. Numerical investigation on the mixing process in a steam ejector with different nozzle structures[J]. Thermal Sciences, 2012, 56: 95-106.
|
[30] |
Sriveerakul T, Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics(Ⅱ): Flow structure of a steam ejector influenced by operating pressures and geometries[J]. Thermal Sciences, 2007, 46: 823-833.
|
[31] |
Moore M J, Walters P T. Predicting the fog drop size in wet steam turbines[C]//Proceedings of the Wet Steam 4 Conference. 1973: 37-73.
|