[1] |
LIU X, CHENG S T, LIU H, et al. A survey on gas sensing technology[J]. Sensors, 2012, 12:9635-9665.
|
[2] |
CAPONE S, FORLEO A, FRANCIOSO L, et al. Solid state gas sensors:state of the art and future activities[J]. J. Optoelectron. Adv. Mater., 2003, 5:1335-1348.
|
[3] |
GUPTA K C, ULSAMER A G, PREUSS P W. Formaldehyde indoor air:sources and toxicity[J]. Environ. Int., 1983, 8:349.
|
[4] |
WANG X F, DING B, SUN M, et al. Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors[J]. Sens. Actuators B, 2010, 144:11-17.
|
[5] |
HERSCHKOVITZ Y, ESHKENAZI I, CAMPBELL C E, et al. An electrochemical biosensor for formaldehyde[J]. J. Electroanal. Chem., 2000, 491:182-187.
|
[6] |
ZHOU K W, JI X L, ZHANG N, et al. On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor[J]. Sens. Actuators B, 2006, 119:392-397.
|
[7] |
VARGHESE S S, VARGHESE S H, SWAMINATHAN S, et al. Two-dimensional materials for sensing:graphene and beyond[J]. Electronics, 2015, 4:651-687.
|
[8] |
LI X, ZHAO Y, WANG X, et al. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors[J]. Sensors and Actuators B:Chemical, 2016, 230:330-336.
|
[9] |
BASU S, BHATTACHARYYA P, Recent developments on graphene and graphene oxide based solid state gas sensors[J]. Sens. Actuators B:Chem., 2012, 173:1-21.
|
[10] |
LEBEDEV A A, LEBEDEVA S P, NOVIKOVC S N, et al. Supersensitive graphene-based gas sensor[J]. Technical Physics, 2016, 61(3):453-457.
|
[11] |
CHEN G, PARONYAN T M, HARUTYUNYAN R. Sub-ppt gas detection with pristine graphene[J]. Appl. Phys. Lett., 2012, 101:652-655.
|
[12] |
YUAN W, SHI G. Graphene-based gas sensors[J]. Journal of Materials Chemistry A, 2013, l:10078-10091.
|
[13] |
LI X, XIE D, DAI R, et al. Formadelyde-sensing properties of reduced graphene oxide by layer-by-Iayer self-assemble method[C]//2014 IEEE International Conference on Electron Devices & Solid-State Circuits. 2015:1-2.
|
[14] |
MU H, ZHANG Z, ZHAO X, et al. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films[J]. Appl. Phys. Lett., 2014, 105:033107.
|
[15] |
HWANG J, KIM M, MPBELL D, et al. Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst[J]. ACS Nano, 2013, 7:385-395.
|
[16] |
MIYASAKA Y, NAKAMURA A, TEMMYO J. Graphite thin films consisting of nanograins of multilayer graphene on sapphire substrates directly grown by alcohol chemical vapor deposition[J]. Jpn. J. Appl. Phys., 2011, 50:04DH12.
|
[17] |
FANTON M A, ROBINSON J A, PULS C, et al. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition[J]. ACS Nano, 2011, 5:8062-8069.
|
[18] |
TERASAWA T O, SAIKI K. Growth of graphene on Cu by plasma enhanced chemical vapor deposition[J]. Carbon, 2012, 50:869-874.
|
[19] |
FERRARI A C. Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun., 2007, 143:47-57.
|
[20] |
NI Z H, WANG Y Y, YU T, et al. Raman spectroscopy and imaging of graphene[J]. Nano Res., 2008, 1:273.
|
[21] |
FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Phys. Rev. Lett., 2006, 97:187401.
|
[22] |
NI Z H, WANG H M, KASIM J, et al. Graphene Thickness determination using reflection and contrast spectroscopy[J]. Nano Lett., 2007, 7(9):2758-2763.
|
[23] |
ROBINSON J A, WETHERINGTON M, TEDESCO J L, et al. Correlating Raman spectral signatures with carrier mobility in epitaxial graphene:a guide to achieving high mobility on the wafer scale[J]. Nano Letters, 2009, 9(8):2873-2876.
|
[24] |
YU C, LI J, LIU Q B, et al. Buffer layer induced band gap and surface low energy optical phonon scattering in epitaxial graphene on SiC(0001)[J]. Appl. Phys. Lett., 2013, 102:013107.
|
[25] |
YU C, LI J, LIU Q B, et al. Quasi-equilibrium growth of monolayer epitaxial graphene on SiC (0001)[J]. Acta Phys. Sin., 2014, 63:038102.
|
[26] |
ZHANG H, FAN L, DONG H, et al. Spectroscopic investigation of plasma-fluorinated monolayer graphene and application for gas sensing[J]. ACS Appl. Mater. Interfaces., 2016, 8:8652-8661.
|
[27] |
LEE G, YANG G, CHO A, et al. Defect-engineered graphene chemical sensors with ultrahigh sensitivity[J]. Phys. Chem. Chem. Phys., 2016, 18:14198.
|
[28] |
VARGHESE S S, LONKAR S, SINGH K K, et al. Recent advances in graphene based gas sensors[J]. Sensors and Actuators B, 2015, 218:160-183.
|
[29] |
WANG T, HUANG D, YANG Z, et al. A review on graphene-based gas/vapor sensors with unique properties and potential applications[J]. Nano-Micro Lett., 2016, 8(2):95-119.
|
[30] |
YU C, LIU Q B, LI J, et al. Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC (0001) substrate by H intercalation[J]. Appl. Phys. Lett., 2014, 105:183105.
|