[1] |
CHOU S K,YANG W M,CHUA K J,et al. Development of micro power generators-a review[J]. Applied Energy,2011,88(1):1-16
|
[2] |
张雁玲,王红涛,孟凡飞,等. 微流体燃料电池发展现状[J]. 化工进展,2016,35(1):65-73. ZHANG Y L,WANG H T,MENG F F,et al. Development status of microfluidic fuel cell[J]. Chemical Industry and Engineering Progress,2016,35(1):65-73.
|
[3] |
LI Z,KONG W,LI J,et al. Predicting the performance of microfluidic fuel cells[J]. Journal of University of Science and Technology of China,2010,40(10):1023-2018
|
[4] |
李丹,宋天丹,康敬欣,等. 燃料电池用质子交换膜的研究进展[J]. 电源技术,2016,40(10):2084-2087. LI D,SONG T D,KANG J X,et al. Development of proton echange membrane for fuel cell[J]. Chinese Journal of Power Sources,2016,40(10):2084-2087.
|
[5] |
QIN C,WANG J,YANG D,et al. Proton exchange membrane fuel cell reversal:a review[J].Catalyst,2016,6(12):197-217.
|
[6] |
JAHNKE T,FUTTER G,LATZ A,et al. Performance and degradation of proton exchange membrane fuel cells:state of the art in modeling from atomistic to system scale[J]. Journal of Power Sources,2016,304(1/2):207-233.
|
[7] |
KIM J H,KIM H K,HWANG K T, et al. Performance of air-breathing direct methanol fuel cell with anion-exchange membrane[J]. International Journal of Hydrogen Energy,2010,35(2):768-773.
|
[8] |
ZHANG B,YE D D,SUI P C,et al. Computational modeling of air-breathing microfluidic fuel cells with flow-over and flow-through anodes[J]. Journal of Power Sources,2014,259(4):15-24.
|
[9] |
WANG Y,WANG C Y,CHEN K S. Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells[J]. Electrochimica Acta,2007,52(12):3965-3975.
|
[10] |
FAIREWATHER J D,CHEUNG P,ST-PIERRE J,et al. A microfluidic approach for measuring capillary pressure in PEMFC gas diffusion layers[J]. Electrochemistry Communications,2007,9(9):2340-2345.
|
[11] |
RATHOURE A K,PRAMANIK H. Electrooxidation study of methanol using H2O2,and air as mixed oxidant at cathode in air breathing microfluidic fuel cell[J]. International Journal of Hydrogen Energy,2016,41(34):15287-15294.
|
[12] |
QIAN F,HE Z,THELEN M P, et al. A microfluidic microbial fuel cell fabricated by soft lithography[J]. Bioresour. Technol.,2011,102(10):5836-40.
|
[13] |
CUNHA Á,MARTINS J,RODRIGUES N,et al. Vanadium redox flow batteries:a technology review[J]. International Journal of Energy Research,2015,39(7):889-918.
|
[14] |
PARASURAMAN A,LIM T M,MENICTAS C,et al. Review of material research and development for vanadium redox flow battery applications[J]. Electrochimica Acta,2013,101(7):27-40.
|
[15] |
WANG S,ZHAO X,COCHELL T, et al. Nitrogen-doped carbon nanotube/graphite felts as advanced electrode materials for vanadium redox flow batteries[J]. The Journal of Physical Chemistry Letters,2012,3(16):2164-2167.
|
[16] |
WEBER A Z,MENCH M M,MEYERS J P,et al. Redox flow batteries:a review[J]. Journal of Applied Electrochemistry,2011,41(10):1137-1164.
|
[17] |
CHENG T T,GYENGE E L. Novel catalyst-support interaction for direct formic acid fuel cell anodes:Pd electrodeposition on surface-modified graphite felt[J]. Journal of Applied Electrochemistry,2009,39(10):1925-1938.
|
[18] |
YOU D,ZHANG H,JIAN C. A simple model for the vanadium redox battery[J]. Electrochimica Acta,2009,54(27):6827-6836.
|
[19] |
YANG W W,ZHAO T S. A two-dimensional,two-phase mass transport model for liquid-feed DMFCs[J]. Electrochimica Acta,2007,52(20):6125-6140.
|
[20] |
KRISHNAMURTHY D,JOHANSSON E O,JIN W L, et al. Computational modeling of microfluidic fuel cells with flow-through porous electrodes[J]. Journal of Power Sources,2011,196(23):10019-10031.
|
[21] |
SONG D,WANG Q,LIU Z,et al. Numerical optimization study of the catalyst layer of PEM fuel cell cathode[J]. Journal of Power Sources,2004,126(1/2):104-111.
|
[22] |
XUAN J,LEUNG D Y C,WANG H Z, et al. Air-breathing membraneless laminar flow-based fuel cells:do they breathe enough oxygen?[J]. Applied Energy,2013,104(2):400-407.
|
[23] |
ZHANG H,XUAN J,XU H,et al. Enabling high-concentrated fuel operation of fuel cells with microfluidic principles:a feasibility study[J]. Applied Energy,2013,112(4):1131-1137.
|