[1] |
DING L K, CHENG J, YUE L C, et al. Fermentative hydrogen and methane co-production from pretreated Spartina anglica biomass with optimal saccharification effect under acid/alkali-assisted steam/microwave heating and enzymolysis[J]. Energy Conversion and Management, 2016, 127:554-560.
|
[2] |
DING L K, CHENG J, QIAO D, et al. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production[J]. Bioresource Technology, 2017, 241:491-499.
|
[3] |
CHENG J, DING L K, LIN R C, et al. Physicochemical characterization of typical municipal solid wastes for fermentative hydrogen and methane co-production[J]. Energy Conversion and Management, 2016, 117:297-304.
|
[4] |
XIA A, CHENG J, DING L K, et al. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis[J]. Bioresource Technology, 2013, 146(146C):436-443.
|
[5] |
XIA A, CHENG J, DING L K, et al. Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis[J]. Applied Energy, 2014, 120(120):23-30.
|
[6] |
MA F H, WANG Y F, DING S F, et al. Twenty percent hydrogen-enriched natural gas transient performance research[J]. International Journal of Hydrogen Energy, 2009, 34(15):6523-6531.
|
[7] |
MA F H, WANG M Y, JIANG L, et al. Performance and emission characteristics of a turbocharged CNG engine fueled by hydrogen-enriched compressed natural gas with high hydrogen ratio[J]. International Journal of Hydrogen Energy, 2010, 35(12):6438-6447.
|
[8] |
HADRI N E, DANG V Q, GOETHEER E L V, et al. Aqueous amine solution characterization for post-combustion CO2 capture process[J]. Applied Energy, 2017, 185:1433-1449.
|
[9] |
BEMHARDSEN I M, KNUUTILA H K. A review of potential amine solvents for CO2 absorption process:absorption capacity, cyclic capacity and pKa[J]. International Journal of Greenhouse Gas Control, 2017, 61:27-48.
|
[10] |
VAIDYA P D, KENIG E Y. CO2-alkanolamine reaction kinetics:a review of recent studies[J]. Chemical Engineering & Technology, 2010, 30(11):1467-1474.
|
[11] |
SHI H C, NAAMI A, IDEM R, et al. International catalytic and noncatalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents[J]. International Journal of Greenhouse Gas Control, 2014, 26(7):39-50.
|
[12] |
REY A, GOUEDARD C, LEDIRAC N, et al. Amine degradation in CO2 capture(Ⅱ):New degradation products of MEA. Pyrazine and alkylpyrazines:analysis, mechanism of formation and toxicity[J]. International Journal of Greenhouse Gas Control, 2013,19(11):576-583.
|
[13] |
PEARSON P, HOLLENKAMP A F, MEULEMAN E. Electrochemical investigation of corrosion in CO2capture plants-influence of amines[J]. Electrochimica Acta, 2013, 110(6):511-516.
|
[14] |
HASIB-UR-RAHMAN M, SIAJ M, LARACHI F. Ionic liquids for CO2 capture-development and progress[J]. Chemical Engineering and Processing, 2010, 49(4):313-322.
|
[15] |
ZHANG X P, ZHANG X C, DONG H F, et al. Carbon capture with ionic liquids:overview and progress[J]. Energy & Environmental Science, 2012, 5(5):6668-6681.
|
[16] |
WANG C M, LUO X Y, ZHU X, et al. The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids[J]. RSC Advances, 2013,3(36):15518-15527.
|
[17] |
刘维伟, 胡松, 陈文, 等. 功能型离子液体的合成表征及CO2吸收性能[J]. 化工学报, 2012, 63(1):139-145. LIU W W, HU S, CHEN W, et al. Synthesis and identification of functional ionic liquids and research on its performance of CO2 absorption[J]. CIESC Journal, 2012, 63(1):139-145.
|
[18] |
陈义峰, 王昌松, 丁键, 等. 负载[APMIm] [Br]离子液体吸收CO2的性能[J]. 化工学报, 2014, 65(5):1716-1720. CHEN Y F, WANG C S, DING J, et al. CO2 absorption properties of supported[APMIm] [Br] [J]. CIESC Journal, 2014, 65(5):1716-1720.
|
[19] |
ZHU J M, XIN F, HUANG J H, et al. Adsorption and diffusivity of CO2 in phosphonium ionic liquid modified silica[J]. Chemical Engineering Journal, 2014, 246(246):79-87.
|
[20] |
RUCKART K N, O'BRIEN R A, WOODARD S M, et al. Porous solids impregnated with task-specific ionic liquids as composite sorbents[J]. Journal of Physical Chemistry C, 2015, 119(35):20681-20697.
|
[21] |
HIREMATH V, JADHAV A H, LEE H, et al. Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica[J]. Chemical Engineering Journal, 2016, 287:602-617.
|
[22] |
REN J, WU L B, LI B G. Preparation and CO2 sorption/desorption of N-(3-aminopropyl) aminoethyl tributylphosphonium amino acid salt ionic liquids supported into porous silica particles[J]. Industrial & Engineering Chemistry Research, 2012,51(23):7901-7909.
|
[23] |
WANG X F, AKHMEDOV N G, DUAN Y H, et al. Amino acid-functionalized ionic liquid solid sorbents for post-combustion carbon capture[J]. ACS Applied Materials & Interfaces, 2013, 5(17):8670-8677.
|
[24] |
杨娜, 王睿. 固载氨基化离子液体的制备及其对CO2的吸附性能[J]. 化工学报, 2013,64(S1):128-132. YANG N, WANG R. Preparation of supported amino-ionic liquid and its CO2 adsorption capacity[J]. CIESC Journal, 2013,64(S1):128-132.
|
[25] |
刘之琳, 滕阳, 张锴, 等. 不同有机胺修饰MCM-41的CO2吸附性能和热稳定性[J]. 燃料化学学报, 2013, 41(4):469-476. LIN Z L, TENG Y, ZHANG K, et al. CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4):469-476.
|
[26] |
ZELENAK V, BADANICOVA M, HALAMOVA D, et al. Amine-modified ordered mesoporous silica:effect of pore size on carbon dioxide capture[J]. Chemical Engineering Journal, 2008, 144(2):336-342.
|
[27] |
WANG L, YAO M, HU X, et al. Amine-modified ordered mesoporous silica:the effect of pore size on CO2 capture performance[J]. Applied Surface Science, 2015, 324:286-292.
|
[28] |
YAN X, ZHANG L, ZHANG Y, et al. Amine-modified SBA-15:effect of pore structure on the performance for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2011,50(6):3220-3226.
|
[29] |
WANG C M, LUO X Y, LUO H M, et al. Tuning the basicity of ionic liquids for equimolar CO2 capture[J]. Angewandte Chemie International Edition, 2011, 50(21):4918-4922.
|
[30] |
FENG X X, HU G S, HU X, et al. Tetraethylenepentamine-modified siliceous mesocellular foam (MCF) for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2013, 52(11):4221-4228.
|
[31] |
CHENG J, LI Y, HU L, et al. CO2 adsorption performance of ionic liquid[P66614] [2-Op] loade onto molecular sieve MCM-41 compared to pure ionic liquid in biohythane/pure CO2 atmospheres[J]. Energy & Fuels, 2016,30(4):3251-3256.
|
[32] |
WANG X, GUO Q, KONG T. Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture[J]. Chemical Engineering Journal, 2015,273:472-480.
|
[33] |
WANG X, CHEN L, GUO Q. Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture[J]. Chemical Engineering Journal, 2015, 260:573-581.
|