化工学报 ›› 2018, Vol. 69 ›› Issue (9): 3879-3886.DOI: 10.11949/j.issn.0438-1157.20180547
徐令君, 王淑娟
收稿日期:
2018-05-23
修回日期:
2018-06-29
出版日期:
2018-09-05
发布日期:
2018-09-05
通讯作者:
王淑娟
基金资助:
国家自然科学基金项目(51576108)。
XU Lingjun, WANG Shujuan
Received:
2018-05-23
Revised:
2018-06-29
Online:
2018-09-05
Published:
2018-09-05
Supported by:
supported by the National Natural Science Foundation of China (51576108).
摘要:
搭建汽液平衡实验台,对液液分相CO2吸收剂1-丁基-3-甲基咪唑四氟硼酸盐([Bmim][BF4])/乙醇胺(MEA)混合水溶液与CO2的汽液平衡进行了实验测量与分析,并对该吸收剂解吸能耗进行计算。结果表明,随着温度的升高,相同担载量溶液对应的CO2分压升高,[Bmim][BF4]质量分数的改变对汽液平衡的影响不明显。与传统有机胺溶液30%(质量)MEA相比,该吸收剂在能耗方面主要优势在于解吸过程中显热和潜热的减小。其反应热在担载量大于0.45之后明显减小,潜热的减小主要由于解吸塔内H2O气相分压和摩尔分数的减小,当[Bmim][BF4]质量分数大于30%时,显热可以减少30%以上,减少的原因主要为比热容的降低和富液胺浓度的提升。
中图分类号:
徐令君, 王淑娟. [Bmim][BF4]/MEA混合水溶液的CO2汽液平衡和解吸能耗分析[J]. 化工学报, 2018, 69(9): 3879-3886.
XU Lingjun, WANG Shujuan. Vapor liquid equilibria and heat of desorption of CO2 in aqueous mixture of[Bmim] [BF4] and MEA[J]. CIESC Journal, 2018, 69(9): 3879-3886.
[1] | STOCKER T, QIN D, PLATTNER G, et al. Climate Change 2013:the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. IPCC, 2013. |
[2] | ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948):1652-1654. |
[3] | STRAZISAR B R, ANDERSON R R. WHITE C M. Degradation pathways for monoethanolamine in a CO2 capture facility[J]. Energy & Fuels, 2003, 17(4):1034-1039. |
[4] | YEH J T, RESNIK K P, RYGLE K, et al. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia[J]. Fuel Processing Technology, 2005, 86(14/15), 1533-1546. |
[5] | ROJEY A, CADOURS R, CARRETTE P, et al. Process for deacidification of a gas by ameans of an absorbent solution with fractionated regeneration by heating:WO2007104856A1[P]. 2006-03-10. |
[6] | HU L. Phase transitional absorption method:US7541011[P]. 2009-06-02. |
[7] | RAYNAL L, ALIX P, BOUILLON P A, et al. The DMX™ process:an original solution for lowering the cost of post-combustion carbon capture[J]. Energy Procedia, 2011, 4:779-786. |
[8] | ALEIXO M, PRIGENT M, GIBERT A, et al. Physical and chemical properties of DMXTM solvents[J]. Energy Procedia, 2011, 4:148-155. |
[9] | BRUDER P, LAURITSEN K G, MEJDELL T, et al. CO2 capture into aqueous solutions of 3-methylaminopropylamine activated dimethyl-monoethanolamine[J]. Chemical Engineering Science, 2012, 75:28-37. |
[10] | BRÚDER P, OWRANG F, SVENDSEN H F. Pilot study-CO2 capture into aqueous solutions of 3-methylaminopropylamine (MAPA) activated dimethyl-monoethanolamine (DMMEA)[J]. International Journal of Greenhouse Gas Control, 2012, 11:98-109. |
[11] | ARSHAD M W, FOSBØL P L, VON SOLMS N, et al. Heat of absorption of CO2 in phase change solvents:2-(diethylamino) ethanol and 3-(methylamino) propylamine[J]. Journal of Chemical & Engineering Data, 2013, 58(7):1974-1988. |
[12] | 许咪咪, 王淑娟. 液-液相变溶剂捕集CO2技术研究进展[J]. 化工学报, 2018, 69(5):1809-1818. XU M M, WANG S J. Research progress in CO2 capture technology using liquid-liquid biphasic solvents[J]. CIESC Journal, 2018, 69(5):1809-1818. |
[13] | ZHANG W, CUI C, MAO M, et al. Development of MEA-based CO2phase change absorbent[J]. Applied Energy, 2017, 195:316-323. |
[14] | KNUUTILA H, ARONU U E, KVAMSDAL H M, et al. Post combustion CO2capture with an amino acid salt[J]. Energy Procedia, 2011, 4:1550-1557. |
[15] | LIEBENTHAL U, PINTO D D D, MONTEIRO J G M S, et al. Overall process analysis and optimisation for CO2 capture from coal fired power plants based on phase change solvents forming two liquid phases[J]. Energy Procedia, 2013, 37:1844-1854. |
[16] | XU Z, WANG S, CHEN C. CO2 absorption by biphasic solvents:mixtures of 1, 4-butanediamine and 2-(diethylamino)-ethanol[J]. International Journal of Greenhouse Gas Control, 2013, 16:107-115. |
[17] | XU Z, WANG S, CHEN C. Kinetics study on CO2 absorption with aqueous solutions of 1, 4-butanediamine, 2-(diethylamino)-ethanol, and their mixtures[J]. Industrial & Engineering Chemistry Research, 2013, 52(29):9790-9802. |
[18] | XU Z, WANG S, QI G, et al. CO2 absorption by biphasic solvents:comparison with lower phase alone[J]. Oil & Gas Science and Technology-Revue D'Ifp Energies Nouvelles, 2014, 69(5):851-864. |
[19] | LUO W, GUO D, ZHENG J, et al. CO2 absorption using biphasic solvent:blends of diethylenetriamine, sulfolane, and water[J]. International Journal of Greenhouse Gas Control, 2016, 53:141-148. |
[20] | FULLER J, CARLIN R T, OSTERYOUNG R A. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate:electrochemical couples and physical properties[J]. Journal of the Electrochemical Society, 1997, 144(11):3881-3886. |
[21] | ZHOU Z B, MATSUMOTO H, TATSUMI K. Low-viscous, low-melting, hydrophobic ionic liquids:1-alkyl-3-methylimidazolium trifluoromethyltrifluoroborate[J]. Chemistry Letters, 2004, 33(6):680-681. |
[22] | ZENG S, ZHANG X, BAI L, et al. Ionic-liquid-based CO2 capture systems:structure, interaction and process[J]. Chemical Reviews, 2017, 117(14):9625-9673. |
[23] | WANG S, WANG X. Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction[J]. Angewandte Chemie International Edition, 2016, 55(7):2308-2320. |
[24] | BABAMOHAMMADI S, SHAMIRI A, AROUA M K. A review of CO2 capture by absorption in ionic liquid-based solvents[J]. Reviews in Chemical Engineering, 2015, 31(4):383-412. |
[25] | ILIUTA I, HASIB-UR-RAHMAN M, LARACHI F. CO2 absorption in diethanolamine/ionic liquid emulsions-chemical kinetics and mass transfer study[J]. Chemical Engineering Journal, 2014, 240:16-23. |
[26] | AHMADY A, SHAMIRI A, HASHIM M A, et al. Vapor pressure of aqueous methyldiethanolamine mixed with ionic liquids[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2):380-386. |
[27] | YUSOFF R, AROUA M K, SHAMIRI A, et al. Density and viscosity of aqueous mixtures of N-methyldiethanolamines (MDEA) and ionic liquids[J]. Journal of Chemical & Engineering Data, 2013, 58(2):240-247. |
[28] | YUSOFF R, SHAMIRI A, AROUA M K, et al. Physical properties of aqueous mixtures of N-methyldiethanolamine (MDEA) and ionic liquids[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5):3349-3355. |
[29] | TAIB M M, MURUGESAN T. Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa[J]. Chemical Engineering Journal, 2012, 181:56-62. |
[30] | AKBAR M M, MURUGESAN T. Thermophysical properties for the binary mixtures of 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide[hmim] [Tf2N]+N-methyldiethanolamine (MDEA) at temperatures (303.15 to 323.15) K[J]. Journal of Molecular Liquids, 2012, 169:95-101. |
[31] | AZIZ N, YUSOFF R, AROUA M K. Absorption of CO2 in aqueous mixtures of N-methyldiethanolamine and guanidinium tris (pentafluoroethyl) trifluorophosphate ionic liquid at high-pressure[J]. Fluid Phase Equilibria, 2012, 322:120-125. |
[32] | HASIB-UR-RAHMAN M, LARACHI F. Kinetic behavior of carbon dioxide absorption in diethanolamine/ionic-liquid emulsions[J]. Separation & Purification Technology, 2013, 118(6):757-761. |
[33] | DUTCHER B, FAN M, RUSSELL A G. Amine-based CO2 capture technology development from the beginning of 2013 A Review[J]. ACS Applied Materials & Interfaces, 2015, 7(4):2137-2148. |
[34] | GAO J, CAO L, DONG H, et al. Ionic liquids tailored amine aqueous solution for pre-combustion CO2 capture:role of imidazolium-based ionic liquids[J]. Applied Energy, 2015, 154:771-780. |
[35] | SAIRI N A, YUSOFF R, ALIAS Y, et al. Solubilities of CO2 in aqueous N-methyldiethanolamine and guanidinium trifluoromethanesulfonate ionic liquid systems at elevated pressures[J]. Fluid Phase Equilibria, 2011, 300(1):89-94. |
[36] | SHOJAEIAN A, HAGHTALAB A. Solubility and density of carbon dioxide in different aqueous alkanolamine solutions blended with 1-butyl-3-methylimidazolium acetate ionic liquid at high pressure[J]. Journal of Molecular Liquids, 2013, 187:218-225. |
[37] | FENG Z, JING W M, ZHENG Z, et al. Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions[J]. Chemical Engineering Journal, 2012, 181:222-228. |
[38] | ARONU U E, GONDAL S, HESSEN E T, et al. Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120℃ and model representation using the extended UNIQUAC framework[J]. Chemical Engineering Science, 2011, 66(24):6393-6406. |
[39] | LI M H, CHANG B C. Solubilities of carbon dioxide in water+monoethanolamine+2-amino-2-methyl-1-propanol[J]. Journal of Chemical and Engineering Data, 1994, 39(3):448-452. |
[40] | JOU F Y, MATHER A E, OTTO F D. The solubility of CO2 in a 30 mass percent monoethanolamine solution[J]. The Canadian Journal of Chemical Engineering, 1995, 73(1):140-147. |
[41] | PARK S B, LEE H. Vapor-liquid equilibria for the binary monoethanolamine+water and monoethanolamine+ethanol systems[J]. Korean Journal of Chemical Engineering, 1997, 14(2):146-148. |
[42] | XU Z, WANG S, QI G, et al. Vapor liquid equilibria and heat of absorption of CO2in aqueous 2-(diethylamino)-ethanol solutions[J]. International Journal of Greenhouse Gas Control, 2014, 29:92-103. |
[43] | FREIRE M G, NEVES C M, MARRUCHO I M, et al. Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids[J]. The Journal of Physical Chemistry A, 2009, 114(11):3744-3749. |
[44] | LU B H, JIN J J, ZHANG L, et al. Absorption of carbon dioxide into aqueous blend of monoethanolamine and 1-butyl-3-methylimidazolium tetrafluoroborate[J]. International Journal of Greenhouse Gas Control, 2012, 11:152-157. |
[45] | YANG J, YU X, YAN J, et al. CO2 capture using amine solution mixed with ionic liquid[J]. Industrial & Engineering Chemistry Research, 2014, 53(7):2790-2799. |
[46] | YU G, FAN S, CHEN X, et al. CO2 absorption by binary mixture of ionic liquids-monoethanolamine at lower pressure[J]. International Journal of Greenhouse Gas Control, 2016, 44:52-58. |
[47] | ALI B S, ALI B H, YUSOFF R, et al. Carbon steel corrosion behaviors in carbonated aqueous mixtures of monoethanolamine and 1-n-butyl-3-methylimidazolium tetrafluoroborate[J]. International Journal of Electrochemical Science, 2012, 7(5):3835-3853. |
[48] | SVENDSEN H F, HESSEN E T, MEJDELL T. Carbon dioxide capture by absorption, challenges and possibilities[J]. Chemical Engineering Journal, 2011, 171(3):718-724. |
[49] | SONG H J, LEE S, PARK K, et al. Simplified estimation of regeneration energy of 30wt% sodium glycinate solution for carbon dioxide absorption[J]. Ind. Eng. Chem. Res., 2008, 47:9925-9930. |
[50] | 李晗, 陈健. 单乙醇胺吸收CO2的热力学模型和过程模拟[J]. 化工学报, 2014, 65(1):47-54. LI H, CHEN J. Thermodynamic modeling and process simulation for CO2 absorption into aqueous monoethanolamine solution[J]. CIESC Journal, 2014, 65(1):47-54. |
[51] | 李小飞. MEA捕集二氧化碳系统能耗与动态特性的研究[D]. 北京:清华大学热能工程系, 2014. LI X F. Study on energy consumption and dynamic behaviour of CO2 capture with MEA in coal fired power plants[D]. Beijing:Department of Thermal Engineering, Tsinghua University, 2014. |
[52] | CHUI L, LIU H, LI M. Heat capacity of alkanolamines by differential scanning calorimetry[J]. Journal of Chemical & Engineering Data, 1999, 44(3):631-636. |
[53] | 孙立, 郭开华, 皇甫立霞. 离子液体[BMIM] [BF4]水溶液比热容及热工特性分析[J]. 低温物理学报, 2011, 33(5):381-385. SUN L, GUO K H, HUANGFU L X. Specific heat capacity and thermal characteristics analysis of ionic liquid[BMIM] [BF4] aqueous solution[J]. Chinese Journal of Low Temperature Physics, 2011, 33(5):381-385. |
[54] | 晏水平, 方梦祥, 王金莲, 等. 烟气CO2 吸收分离工艺再生能耗的分析与模拟[J]. 动力工程, 2007, 27(6):969-974. YAN S P, FANG M X, WANG J L, et al. An analysis of regeneration energy consumption in absorption and dissociation processes of flue gas CO2 and its simulation[J]. Journal of Power Engineering, 2007, 27(6):969-974. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[10] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[11] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[12] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[13] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[14] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[15] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||