[1] |
张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1):1-14. ZHANG Y, TANG M, TIAN Z, et al. Research progress of removal technology of antibiotics from antibiotic production wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(1):1-14.
|
[2] |
NOVO A, MANAIA C M. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants[J]. Applied Microbiology & Biotechnology, 2010, 87(3):1157-1166.
|
[3] |
黄宏, 李圆杏, 杨红伟. 水环境中抗生素的光降解研究进展[J]. 环境化学, 2013, 10(7):1335-1341. HUANG H, LI Y X, YANG H W. Research progress on photodegradation of antibiotics in aqueous solution[J]. Environmental Chemistry, 2013, 10(7):1335-1341.
|
[4] |
蒋胜韬, 祝建中, 管玉江, 等. Si-FeOOH/H2O2类芬顿降解盐酸四环素废水的效能及其机理[J]. 化工学报, 2015, 66(10):4244-4251. JIANG S T, ZHU J Z, GUAN Y J, et al. Degradation and mechanism of tetracycline hydrochloride in wastewater by Si-FeOOH/H2O2 Fenton-like[J]. CIESC Journal, 2015, 66(10):4244-4251.
|
[5] |
LEE Y, VON G U. Oxidative transformation of micropollutants during municipal wastewater treatment:comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate Ⅵ, and ozone) and non-selective oxidants (hydroxyl radical)[J]. Water Research, 2010, 44(2):555-566.
|
[6] |
YI Q, GAO Y, ZHANG H, et al. Establishment of a pretreatment method for tetracycline production wastewater using enhanced hydrolysis[J]. Chemical Engineering Journal, 2016, 300(15):139-145.
|
[7] |
MITCHELL S M, ULLMAN J L, TEEL A L, et al. pH and temperature effects on the hydrolysis of three β-lactam antibiotics:ampicillin, cefalotin and cefoxitin[J]. Science of the Total Environment, 2014, 466(1):547-555.
|
[8] |
MITCHELL S M, ULLMAN J L, TEEL A L, et al. Hydrolysis of amphenicol and macrolide antibiotics:chloramphenicol, florfenicol, spiramycin, and tylosin[J]. Chemosphere, 2015, 134(9):504-511.
|
[9] |
孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5):1743-1756. SUN Y, YU L L, HUANG H B, et al. Research trend and practical development of advanced oxidation process on degradation of recalcitrant organic wastewater[J]. CIESC Journal, 2017, 68(5):1743-1756.
|
[10] |
任健, 马宏瑞, 马炜宁, 等. Fe/C微电解-Fenton氧化-混凝沉淀-生化法处理抗生素废水的试验研究[J]. 水处理技术, 2011, 37(3):84-87. REN J, MA H R, MA W N, et al. Study of the treatment of antibiotic wastewater with ferric-carbon microelectrolysis-Fenton oxidation-coagulation sedimentation-biological process[J]. Technology of Water Treatment, 2011, 37(3):84-87.
|
[11] |
ELMOLLA E S, CHAUDHURI M. The feasibility of using combined Fenton-SBR for antibiotic wastewater treatment[J]. Desalination, 2012, 285(3):14-21.
|
[12] |
MARTINEZ F, MOLINA R, RODIGUEZ I, et al. Techno-economical assessment of coupling Fenton/biological processes for the treatment of a pharmaceutical wastewater[J]. Journal of Environmental Chemical Engineering, 2018, 6(1):485-494.
|
[13] |
GAO Y, GAN H, ZHANG G, et al. Visible light assisted Fenton-like degradation of rhodamine B and 4-nitrophenol solutions with a stable poly-hydroxyl-iron/sepiolite catalyst[J]. Chemical Engineering Journal, 2013, 217(1):221-230.
|
[14] |
LAN H, WANG A, LIU R, et al. Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber[J]. Journal of Hazardous Materials, 2015, 285(21):167-172.
|
[15] |
CHEN F, XIE S, HUANG X, et al. Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2[J]. Journal of Hazardous Materials, 2016, 322(15):152-162.
|
[16] |
BORUAH P K, SHARMA B, KARBHAL I, et al. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation[J]. Journal of Hazardous Materials, 2016, 325(5):90-100.
|
[17] |
KALANTARY R R, FARZADKIA M, KERMANI M, et al. Heterogeneous electro-Fenton process by nano-Fe3O4 for catalytic degradation of amoxicillin:process optimization using response surface methodology[J]. Journal of Environmental Chemical Engineering, 2018, 6(4):4644-4652.
|
[18] |
ELMOLLA E S, CHAUDHURI M. Combined photo-Fenton-SBR process for antibiotic wastewater treatment[J]. Journal of Hazardous Materials, 2011, 192(3):1418-1426.
|
[19] |
ZHU L, ZHOU J, LV M, et al. Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE[J]. Chemosphere, 2015, 121(5):26-32.
|
[20] |
WANG Z P, ZHANG T. Characterization of soluble microbial products (SMP) under stressful conditions[J]. Water Research, 2010, 44(18):5499-5509.
|
[21] |
BADDAM R, REDDY G B, RACZKOWSKI C, et al. Activity of soil enzymes in constructed wetlands treated with swine wastewater[J]. Ecological Engineering, 2016, 91(6):24-30.
|
[22] |
GUO X L, GU J, GAO H, et al. Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting[J]. Bioresource Technology, 2012, 108(4):140-148.
|
[23] |
HAO L P, BIZE A, CONTEAU D, et al. New insights into the key microbial phylotypes of anaerobic sludge digesters under different operational conditions[J]. Water Research, 2016, 102(10):158-169.
|
[24] |
胡红伟, 李吕木, 钱坤, 等. 发酵菌剂接种量对堆肥理化性质和有关酶活的影响[J]. 农业环境科学学报, 2013, 32(6):1261-1270. HU H W, LI L M, QIAN K, et al. Effect of doses of fermentation inoculum on physico-chemical properties and related enzymic activities during the composting process[J]. Journal of Agro-Environment Science, 2013, 32(6):1261-1270.
|
[25] |
周昌琴, 孔秀琴, 陈磊, 等. PESA对高钙废水中污泥酶活性的影响[J]. 环境工程学报, 2017, 11(4):2212-2218. ZHOU C Q, KONG X Q, CHEN L, et al. Effect of calcium and PESA on enzyme activities in activated sludge[J]. Chinese Journal of Environmental Engineering, 2017, 11(4):2212-2218.
|
[26] |
王静, 黄申斌, 江敏, 等. 抗生素类污染物对活性污泥酶活的影响研究[J]. 环境污染与防治, 2011, 33(12):27-32. WANG J, HUANG S B, JIANG M, et al. Effect of antibiotics pollutants on enzyme activities in activated sludge[J]. Environmental Pollution & Control, 2017, 11(4):2212-2218.
|
[27] |
刘文龙, 彭永臻, 苗圆圆, 等. 好氧饥饿对膨胀污泥硝化性能及污泥特性的影响[J]. 化工学报, 2015, 66(3):1142-1149. LIU W L, PENG Y Z, MIAO Y Y, et al. Effects of aerobic starvation on nitrification performance and sludge characteristics of bulking sludge[J]. CIESC Journal, 2015, 66(3):1142-1149.
|
[28] |
ZHANG W J, CAO B D, WANG D S, et al. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS)[J]. Water Research, 2016, 88(1):728-739.
|
[29] |
LENZ S, BOHM K, OTTNER R, et al. Determination of leachate compounds relevant for landfill aftercare using FT-IR spectroscopy[J]. Waste Management, 2016, 55(9):321-329.
|
[30] |
YANG Z H, XU R, ZHANG Y, et al. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease[J]. Bioresource Technology, 2016, 212(1):164-173.
|