化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1761-1771.DOI: 10.11949/j.issn.0438-1157.20181199
收稿日期:
2018-10-15
修回日期:
2019-01-26
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
孙亮亮
作者简介:
<named-content content-type="corresp-name">李文玉</named-content>(1993—),女,硕士研究生,<email>lwylucy@126.com</email>|孙亮亮(1982—),女,博士,讲师,<email>sunliangliang@home.swjtu.edu.cn</email>
基金资助:
Wenyu LI(),Liangliang SUN(),Yanping YUAN,Xiaoling CAO,Bo XIANG
Received:
2018-10-15
Revised:
2019-01-26
Online:
2019-05-05
Published:
2019-05-05
Contact:
Liangliang SUN
摘要:
提出一种太阳能热水相变蓄热炕的新型供暖系统,系统无须设置水箱,仅使用炕板与相变材料作为蓄热装置,可有效提高供暖效率。基于Fluent数值模拟平台,建立相变炕的二维非稳态传热模型,研究相变炕的蓄放热性能,并与混凝土炕的热性能进行对比;还分析了相变材料的相变温度和潜热对相变炕蓄放热性能的影响。结果表明,在设定工况下,与混凝土炕相比,上炕面的日间与夜间稳定温度分别提高2℃和4℃,上炕面最大温差由3.7℃降至0.8℃,全天得热量提高了66.36%。因此,相变炕具有上炕面温度较高、温度分布均匀、得热量大以及保温性能好等优点;提高相变温度,炕体得热量会有所减少,但对提升上炕面温度作用显著;增大相变潜热,可以显著提高炕体得热量,但对提升上炕面温度作用不明显。
中图分类号:
李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
Wenyu LI, Liangliang SUN, Yanping YUAN, Xiaoling CAO, Bo XIANG. Heat storage and release characteristics of solar phase change Kang and influence factors[J]. CIESC Journal, 2019, 70(5): 1761-1771.
材料名称 | 厚度/ mm | 密度/ (kg·m-3) | 比热容/ (J·(kg·K)-1) | 热导率/ (W·(m·K)-1) |
---|---|---|---|---|
水泥砂浆 | 30 | 1800 | 1050 | 0.93 |
卵石混凝土 | 60 | 2300 | 920 | 1.51 |
聚苯乙烯 | 20 | 30 | 1380 | 0.042 |
钢筋混凝土 | 100 | 2500 | 920 | 1.74 |
表1 炕体材料的物性参数及几何参数
Table 1 Physical properties and geometric properties of Kang material
材料名称 | 厚度/ mm | 密度/ (kg·m-3) | 比热容/ (J·(kg·K)-1) | 热导率/ (W·(m·K)-1) |
---|---|---|---|---|
水泥砂浆 | 30 | 1800 | 1050 | 0.93 |
卵石混凝土 | 60 | 2300 | 920 | 1.51 |
聚苯乙烯 | 20 | 30 | 1380 | 0.042 |
钢筋混凝土 | 100 | 2500 | 920 | 1.74 |
密度/ (kg·m-3) | 比热容/ (J·(kg·K)-1) | 热导率/ (W·(m·K)-1) | 运动黏度/ (m2·s-1) | 热膨胀系数/K-1 |
---|---|---|---|---|
890 | 2090 | 0.149 | 0.00507 | 0.000984 |
表2 相变材料的物性参数
Table 2 Physical properties of phase change material
密度/ (kg·m-3) | 比热容/ (J·(kg·K)-1) | 热导率/ (W·(m·K)-1) | 运动黏度/ (m2·s-1) | 热膨胀系数/K-1 |
---|---|---|---|---|
890 | 2090 | 0.149 | 0.00507 | 0.000984 |
材料 | 密度/ (kg·m-3) | 热导率/ (W·(m·K)-1) | 比热容/ (J·(kg·K)-1) |
---|---|---|---|
十六醇-癸酸 | 861.57 | 0.155 | 2490 |
粉煤灰 | 2600 | 0.2 | 920 |
混凝土 | 2165 | 1.1 | 380 |
表3 材料的物性参数
Table 3 Physical properties of material
材料 | 密度/ (kg·m-3) | 热导率/ (W·(m·K)-1) | 比热容/ (J·(kg·K)-1) |
---|---|---|---|
十六醇-癸酸 | 861.57 | 0.155 | 2490 |
粉煤灰 | 2600 | 0.2 | 920 |
混凝土 | 2165 | 1.1 | 380 |
测点 | 误差范围/% | 平均误差/% |
---|---|---|
相变墙A点 | 0.08~3.11 | 0.91 |
混凝土墙A点 | 0.48~4.96 | 2.63 |
相变墙B点 | 0.31~5.04 | 2.11 |
混凝土墙B点 | 2.8~5.18 | 4.17 |
表4 数值模拟的误差分析
Table 4 Error analysis of numerical simulation
测点 | 误差范围/% | 平均误差/% |
---|---|---|
相变墙A点 | 0.08~3.11 | 0.91 |
混凝土墙A点 | 0.48~4.96 | 2.63 |
相变墙B点 | 0.31~5.04 | 2.11 |
混凝土墙B点 | 2.8~5.18 | 4.17 |
1 | 清华大学建筑节能研究中心 . 中国建筑节能年度发展研究报告(2008)[M]. 北京: 中国建筑工业出版社, 2008: 173. |
Building Energy Conservation Research Center, University Tsinghua . 2008 Annual Report on China Building Energy Efficiency[M]. Beijing: China Architecture & Building Press, 2008: 173. | |
2 | Zhuang Z , Li Y G , Chen B , et al . Chinese Kang as a domestic heating system in rural northern China—a review[J]. Energy and Buildings, 2009, 41(1): 111-119. |
3 | Qian H , Li Y G , Zhang X S , et al . Surface temperature distribution of Chinese Kangs[J]. International Journal of Green Energy, 2010, 7(3): 347-360. |
4 | 高翔翔, 胡冗冗, 刘加平, 等 . 北方炕民居冬季室内热环境研究[J]. 建筑科学, 2010, 26(2): 37-40. |
Gao X X , Hu R R , Liu J P , et al . Research on winter indoor thermal environment of courtyard house with Chinese Kang in north China[J]. Build Science, 2010, 26(2): 37-40. | |
5 | 刘满, 夏晓东 . 辽宁省农村住宅的采暖方式与能耗研究[J]. 建筑节能, 2007, 35(7): 56-59. |
Liu M , Xia X D . Research on heating methods and energy consumption of rural houses in Liaoning province[J]. Energy Consumption, 2007, 35(7): 56-59. | |
6 | 张寅平, 胡汉平, 孔祥冬, 等 . 相变贮能——理论和应用[M]. 合肥: 中国科学技术大学出版社, 1996: 1-5. |
Zhang Y P , Hu H P , Kong X D , et al . Latent Heat Storage—Theory and Application[M]. Hefei: University of Science and Technology of China Press, 1996: 1-5. | |
7 | 袁艳平, 向波, 曹晓玲, 等 . 建筑相变储能技术研究现状与发展[J]. 西南交通大学学报, 2016, 51(3): 585-598. |
Yuan Y P , Xiang B , Cao X L , et al . Research status and development on latent energy storage technology of building[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 585-598. | |
8 | Yang M , Yang X D , Wang P S , et al . A new Chinese solar Kang and its dynamic heat transfer model[J]. Energy and Buildings, 2013, 62(3): 539-549. |
9 | Yang M , Yang X D , Wang Z F , et al . Thermal analysis of a new solar Kang system[J]. Energy and Buildings, 2014, 75(2): 531-537. |
10 | 王崇杰, 管振忠, 张蓓, 等 . 传统火炕的生态技术改造——太阳炕系统[C]//中国建筑学会技术分会, 东南大学建筑分会. 绿色建筑与建筑技术. 北京: 中国建筑工业出版社, 2006: 566-569. |
Wang C J , Guan Z Z , Zhang B , et al . Ecological and technological reform of traditional fire Kang—solar Kang system[C]// Technical Branch of China Architectural Society, Architectural Branch of Southeast University. Green Building and Building Technology. Beijing: China Architecture & Building Press, 2006: 566-569. | |
11 | 冯国会, 王茜, 李刚, 等 . 太阳能炕采暖系统的试验研究[J]. 可再生能源, 2013, 31(3): 11-13. |
Feng G H , Wang Q , Li G , et al . Experimental study on solar Kang heating system[J]. Renewable Energy Resources, 2013, 31(3): 11-13. | |
12 | 李刚, 李小龙, 李世鹏, 等 . 太阳能辅助火炕供暖系统热工性能[J]. 沈阳建筑大学学报(自然科学版), 2014, 30(2): 305-311. |
Li G , Li X L , Li S P , et al . Experimental study on solar added Kang heating system[J]. Journal of Shenyang Jianzhu University (Natural Science), 2014, 30(2): 305-311. | |
13 | 张玲 . 寒冷地区农居太阳能炕采暖系统设计研究[D]. 济南: 山东建筑大学, 2010. |
Zhang L . Design research of solar Kang heating system used in rural residences in cold area[D]. Jinan: Shangdong Jianzhu University, 2010. | |
14 | He W , Jiang Q Y , Ji J , et al . A study on thermal performance, thermal comfort in sleeping environment and solar energy contribution of solar Chinese Kang[J]. Energy and Buildings, 2013, 58(2): 66-75. |
15 | 江清阳 . 与新型百叶集热墙结合的复合太阳能炕系统实验和理论研究[D]. 合肥: 中国科学技术大学, 2012. |
Jiang Q Y . Experimental and numerical study on solar Chinese Kang system combined with novel collector-trombe wall[D]. Hefei: University of Science and Technology of China, 2012. | |
16 | 李刚, 池兰, 冯国会, 等 . 相变蓄能火炕热舒适性的试验[J]. 农业工程学报, 2016, 32(11): 244-249. |
Li G , Chi L , Feng G H , et al . Experiment on thermal comfort performance of phase-change energy storage Kang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 244-249. | |
17 | 徐洪波, 焦庆余, 徐国堂 . 高效预制组装架空火炕的研究[J]. 农业工程学报, 1991, 27(3): 81-86. |
Xu H B , Jiao Q Y , Xu G T . The research of the high efficiency prefabricated and combined-suspend heatable brick bed[J]. Transactions of the Chinese Society of Agricultural Engineering, 1991, 27(3): 81-86. | |
18 | 冯革宇, 刘博智 . 用数值模拟方法优化设计吊炕研究[J]. 建筑热能通风空调, 2009, 28(5): 53-57. |
Feng G Y , Liu B Z . Optimization design of suspended Kang based on numerical simulation[J]. Building Energy & Environment, 2009, 28(5): 53-57. | |
19 | 牛叔文, 钱玉杰, 胡莉莉, 等 . 甘肃庄浪县农户吊炕的热效率模拟分析[J]. 农业工程学报, 2013, 29(6): 193-201. |
Niu S W , Qian Y J , Hu L L , et al . Model analysis on thermal efficiency of suspended Kang of rural households in Zhuanglang county, Gansu province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(6): 193-201. | |
20 | Macfarlane W V . Thermal comfort zones[J]. Architectural Science Review, 1958, 1(1): 1-14. |
21 | Chrenko R A . Indoor climate: effects on human comfort, performance and health: P. O. Fanger and O. Valbjorn, eds, Danish Building Research Institute, Copenhagen (1979) 895 pp[J]. International Journal of Refrigeration, 1980, 3(3): 173-174. |
22 | Choi J W . Bed climate of Korean using ondol heating system[J]. Journal of Thermal Biology, 1993, 18(5): 399-403. |
23 | 李净, 刘艳峰, 宋聪, 等 . 西北民居冬季睡眠被褥微气候研究[J]. 建筑科学, 2016, 32(2): 65-69. |
Li J , Liu Y F , Song C , et al . Winter bedding microclimate in rural houses in northwest China[J]. Building Science, 2016, 32(2): 65-69. | |
24 | 中华人民共和国住房和城乡建设部 . 农村火炕系统通用技术规程: JGJ/T 358—2015[S]. 北京: 中国建筑工业出版社, 2015. |
Ministry of Housing and Urban-Rural Development of the People's Republic of China . Technical specification for rural Kang system: JGJ/T 358—2015[S]. Beijing: China Architecture & Building Press, 2015. | |
25 | 张群力, 高岩, 狄洪发 . 低温热水型相变蓄能地板采暖房间动态热性能研究[J]. 太阳能学报, 2015, 36(4): 943-949. |
Zhang Q L , Gao Y , Di H F . Research on the dynamic performance of room with low temperature hot water floor heating system thermal energy storage[J]. Acta Energiae Solaris Sinica, 2015, 36(4): 943-949. | |
26 | 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量检验检疫总局 . 农村居住建筑节能设计标准: GB/T 50824—2013[S]. 北京: 中国建筑工业出版社, 2013. |
Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China . Design standard for energy efficiency of rural residential buildings: GB/T 50824—2013[S]. Beijing: China Architecture & Building Press, 2013. | |
27 | 陆耀庆 . 实用供热空调设计手册[M]. 2版.北京: 中国建筑工业出版社, 2008: 496. |
Lu Y Q . Design Manual of Practical Heating and Air Conditioning[M]. 2nd ed. Beijing: China Architecture & Building Press, 2008: 496. | |
28 | 刘艳峰 . 地板供暖设计与运行基础理论研究[D]. 西安: 西安建筑科技大学, 2004. |
Liu Y F . Study on basic theory of designing and running control of imbed pipe heating[D]. Xi’an: Xi’an University of Architecture and Technology, 2004. | |
29 | Wang S K . Handbook of Air Conditioning and Refrigeration[M]. 2nd ed. The United States of America: McGraw-Hill Companies, 2000: 68-72. |
30 | 杨颖, 张盼 . 建筑用新型复合相变材料储能过程的热性能研究[J]. 化工新型材料, 2015, 43(1): 120-122. |
Yang Y , Zhang P . Thermal performance study on energy storage of new composite phase materials used in building envelope[J]. New Chemical Materials, 2015, 43(1): 120-122. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[11] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[12] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[13] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[14] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[15] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||