化工学报 ›› 2013, Vol. 64 ›› Issue (1): 63-75.DOI: 10.3969/j.issn.0438-1157.2013.01.009
陈光文, 赵玉潮, 乐军, 董正亚, 曹海山, 袁权
收稿日期:
2012-10-22
修回日期:
2012-11-04
出版日期:
2013-01-05
发布日期:
2013-01-05
通讯作者:
陈光文
作者简介:
陈光文(1967—),男,博士,研究员。
基金资助:
国家自然科学基金项目(21225627);国家重点基础研究发展计划项目(2009CB219903);国家科技支撑计划项目(2012BAA08B02)。
CHEN Guangwen, ZHAO Yuchao, YUE Jun, DONG Zhengya, CAO Haishan, YUAN Quan
Received:
2012-10-22
Revised:
2012-11-04
Online:
2013-01-05
Published:
2013-01-05
Supported by:
supported by the National Natural Science Foundation of China (21225627),the National Basic Research Program of China (2009CB219903) and the National Science & Technology Pillar Program (2012BAA08B02).
摘要: 微化学工程是现代化学工程学科前沿,主要研究微时空尺度下流体流动、传热、传质现象与反应规律。着重介绍近十年来微通道内气-液、液-液两相流体流动、混合与传质的理论和实验的最新研究进展,并对微化工技术的发展进行展望。
中图分类号:
陈光文, 赵玉潮, 乐军, 董正亚, 曹海山, 袁权. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1): 63-75.
CHEN Guangwen, ZHAO Yuchao, YUE Jun, DONG Zhengya, CAO Haishan, YUAN Quan. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1): 63-75.
[1] | Chen Guangwen(陈光文), Yuan Quan(袁权).Micro-chemical technology[J].J.Chem.Ind.Eng.(China)(化工学报), 2003,54(4):427-439 |
[2] | Service R F.Miniaturization puts chemical plant where you want them[J].Science, 1998,282(5388):400 |
[3] | Jhnisch K, Hessel V, Lwe H, Baerns M.Chemistry in microstructured reactors[J].Angew.Chem.Int.Ed., 2004,43(4):106-446 |
[4] | Chen Guangwen(陈光文).Advance and prospect of microchemical engineering and technology[J].Modern Chem.Ind.(现代化工), 2007,27(10):8-13 |
[5] | Triplett K A, Ghiaasiaan S M, Abdel-Khalik S I, Sadowski D L.Gas-liquid two-phase flow in microchannels(Ⅰ):Two-phase flow patterns[J].Int.J.Multiphase Flow, 1999,25(3):377-394 |
[6] | Zhao T S, Bi Q C.Co-current air-water two-phase flow patterns in vertical triangular microchannels[J].Int. J. Multiphase Flow, 2001,27(5):765-782 |
[7] | Kawahara A, Chung P M Y, Kawaji M.Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel[J].Int.J.Multiphase Flow, 2002,28(9):1411-1435 |
[8] | Chung P M Y, Kawaji M.The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels[J].Int.J.Multiphase Flow, 2004,30(7/8):735-761 |
[9] | Serizawa A, Feng Z P, Kawara Z.Two-phase flow in microchannels[J].Exp.Therm.Fluid Sci., 2002,26(6/7):703-714 |
[10] | Akbar M K, Plummer D A, Ghiaasiaan S M.On gas-liquid two-phase flow regimes in microchannels[J].Int. J. Multiphase Flow, 2003,29(5):855-865 |
[11] | Waelchli S, von Rohr P R.Two-phase flow characteristics in gas-liquid microreactors[J].Int.J.Multiphase Flow, 2006,32(7):791-806 |
[12] | Xiong R, Chung J N.An experimental study of the size effect on adiabatic gas-liquid two-phase flow patterns and void fraction in microchannels[J].Phys.Fluids, 2007,19(3):033301 |
[13] | Yue J, Luo L, Gonthier Y, Chen G W, Yuan Q.An experimental investigation of gas-liquid two-phase flow in single microchannel contactors[J].Chem.Eng.Sci., 2008,63(16):4189-4202 |
[14] | Saisorn S, Wongwises S.Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel[J].Exp.Therm.Fluid Sci., 2008,32(3):748-760 |
[15] | Shao N, Gavriilidis A, Angeli P.Flow regimes for adiabatic gas-liquid flow in microchannels[J].Chem.Eng.Sci., 2009,64(11):2749-2761 |
[16] | Kawahara A, Sadatomi M, Nei K, Matsuo H.Experimental study on bubble velocity, void fraction and pressure drop for gas-liquid two-phase flow in a circular microchannel[J].Int.J.Heat Fluid Flow, 2009,30(5):831-841 |
[17] | Saisorn S, Wongwises S.The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels[J].Exp. Therm. Fluid Sci., 2010,34(4):454-462 |
[18] | Zhang T, Cao B, Fan Y, Gonthier Y, Luo L, Wang S D.Gas-liquid flow in circular microchannel(Ⅰ):Influence of liquid physical properties and channel diameter on flow patterns[J].Chem.Eng.Sci., 2011,66(23):5791-5803 |
[19] | Choi C W, Yu D I, Kim M H.Adiabatic two-phase flow in rectangular microchannels with different aspect ratios(Ⅰ):Flow pattern, pressure drop and void fraction[J].Int. J. Heat Mass Transf., 2011,54(1/2/3):616-624 |
[20] | Sur A, Liu D.Adiabatic air-water two-phase flow in circular microchannels[J].Int.J.Therm.Sci., 2012,53:18-34 |
[21] | Kim S M, Mudawar I.Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows[J].Int.J.Heat Mass Transf., 2012,55(11/12):3246-3261 |
[22] | Yue J, Chen G W, Yuan Q.Pressure drops of single and two-phase flows through T-type microchannel mixers[J].Chem.Eng.J., 2004,102(1):11-24 |
[23] | Saisorn S, Wongwises S.An inspection of viscosity model for homogeneous two-phase flow pressure drop prediction in a horizontal circular micro-channel[J].Int.Commun.Heat Mass Transf., 2008,35(7):833-838 |
[24] | Lockhart R W, Martinelli R C.Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J].Chem.Eng.Prog., 1949,45:39-48 |
[25] | Triplett K A, Ghiaasiaan S M, Abdel-Khalik S I, Lemouel A, McCord B N.Gas-liquid two-phase flow in microchannels(Ⅱ):Void fraction and pressure drop[J].Int. J. Multiphase Flow, 1999,25(3):395-410 |
[26] | Cubaud T, Ho C M.Transport of bubbles in square microchannels[J].Phys.Fluids, 2004,16(12):4575-4585 |
[27] | Liu H, Vandu C O, Krishna R.Hydrodynamics of Taylor flow in vertical capillaries:flow regimes, bubble rise velocity, liquid slug length, and pressure drop[J].Ind. Eng. Chem.Res., 2005,44(14):4884-4897 |
[28] | Kreutzer M T, Kapteijn F, Moulijn JA, Kleijn C R, Heiszwolf J.Inertial and interfacial effects on pressure drop of Taylor flow in capillaries[J].AIChE J., 2005,51(9):2428-2440 |
[29] | Yue J, Luo L, Gonthier Y, Chen G W, Yuan Q.An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J].Chem.Eng.Sci., 2009,64(16):3697-3708 |
[30] | Warnier M J F, de Croon M H J M, Rebrov E V, Schouten J C.Pressure drop of gas-liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers[J].Microfluid Nanofluid, 2010,8(1):33-45 |
[31] | Garstecki P, Fuerstman M J, Stone H A, Whitesides G M.Formation of droplets and bubbles in a microfluidic T-junction scaling and mechanism of break-up[J].Lab Chip, 2006,6(3):437-446 |
[32] | Abate A R, Mary P, van Steijn V, Weitz D A. Experimental validation of plugging during drop formation in a T-junction[J].Lab Chip, 2012,12(8):1516-1521 |
[33] | Cubaud T, Tatineni M, Zhong X, Ho C M.Bubble dispenser in microfluidic devices[J].Phys.Rev.E, 2005,72(3):037302 |
[34] | Qian D, Lawal A.Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J].Chem. Eng. Sci., 2006,61(23):7609-7625 |
[35] | van Steijn V, Kreutzer M T, Kleijn C R.μ-PIV study of the formation of segmented flow in microfluidic T-junctions[J].Chem.Eng.Sci., 2007,62(24):7505-7514 |
[36] | Dietrich N, Poncin S, Midoux N, Li H Z.Bubble formation dynamics in various flow-focusing microdevices[J].Langmuir, 2008,24(24):13904-13911 |
[37] | Fu T T, Ma Y G, Funfschilling D, Li H Z.Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J].Chem.Eng.Sci., 2009,64(10):2392-2400 |
[38] | Xiong R, Chung J N.Bubble generation and transport in a microfluidic device with high aspect ratio[J].Exp. Therm. Fluid Sci., 2009,33(8):1156-1162 |
[39] | Fu T T, Funfschilling D, Ma Y G, Li H Z.Scaling the formation of slug bubbles in microfluidic flow-focusing devices[J].Microfluid.Nanofluid., 2010,8(4):467-475 |
[40] | Fu T T, Ma Y G, Funfschilling D, Zhu C Y, Li H Z. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J].Chem.Eng.Sci., 2010,65(12):3739-3748 |
[41] | Taylor G I.Deposition of a viscous fluid on the wall of a tube[J].J.Fluid Mech., 1961,10(2):161-165 |
[42] | Bretherton F P.The motion of long bubbles in tubes[J].J.Fluid Mech., 1961,10(2):166-188 |
[43] | Aussillous P, Quéré D.Quick deposition of a fluid on the wall of a tube[J].Phys.Fluids, 2000,12(10):2367-2371 |
[44] | Han Y, Shikazano N.Measurement of the liquid film thickness in micro tube slug flow[J].Int.J.Heat Fluid Flow, 2009,30(5):842-845 |
[45] | Han Y, Shikazano N.Measurement of liquid film thickness in micro square channel[J].Int.J.Multiphase Flow, 2009,35(10):896-903 |
[46] | Gunther A, Jhunjhunwala M, Thalmann M, Schmidt M A, Jensen K F.Micromixing of miscible liquids in segmented gas-liquid flow[J].Langmuir, 2005,21(4):1547-1555 |
[47] | Gupta R, Fletcher D F, Haynes B S.CFD modelling of flow and heat transfer in the Taylor flow regime[J].Chem. Eng. Sci., 2010,65(6):2094-2107 |
[48] | Asadolahi A N, Gupta R, Leung S S Y, Fletcher D F, Haynes B S.Validation of a CFD model of Taylor flow hydrodynamics and heat transfer[J].Chem.Eng.Sci., 2012,69(1):541-552 |
[49] | Fries D A, von Rohr S P R.Liquid mixing in gas-liquid two-phase flow by meandering microchannels[J].Chem. Eng. Sci., 2009,64(6):1326-1335 |
[50] | Muradoglu M.Axial dispersion in segmented gas-liquid flow:effects of alternating channel curvature[J].Phys. Fluids, 2010,22(12):122106 |
[51] | Yue J, Chen G W, Yuan Q, Luo L, Gonthier Y. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J].Chem.Eng.Sci., 2007,62(7):2096-2108 |
[52] | Sobieszuk P, Pohorecki R, Cygański P, Grzelka J. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel[J].Chem.Eng.Sci., 2011,66(23):6048-6056 |
[53] | Kuhn S, Jensen K F.A pH-sensitive laser-induced fluorescence technique to monitor mass transfer in multiphase flows in microfluidic devices[J].Ind. Eng. Chem.Res., 2012,51(26):8999-9006 |
[54] | Shao N, Gavriilidis A, Angeli P.Mass transfer during Taylor flow in microchannels with and without chemical reaction[J].Chem.Eng.J., 2010,160(3):873-881 |
[55] | Tan J, Lu Y C, Xu J H, Luo G S.Mass transfer performance of gas-liquid segmented flow in microchannels[J].Chem.Eng.J., 2012, 181:229-235 |
[56] | Tan J, Lu Y C, Xu J H, Luo G S.Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel[J].Chem.Eng.J., 2012,185:314-320 |
[57] | Ber Trachsel F, Hutter C, Vonrohr P.Transparent silicon/glass microreactor for high-pressure and high-temperature reactions[J].Chem.Eng.J., 2008,135(1):S309-S316 |
[63] | Blanch-Ojea R, Tiggelaar R M, Pallares J,Grau F X, Gardeniers J G E.Flow of CO2-ethanol and of CO2-methanol in a non-adiabatic microfluidic T-junction at high pressures[J].Microfluid Nanofluid, 2012,12(6):927-940 |
[64] | Massoudi R, King A D.Effect of pressure on surface-tension of water -adsorption of low-molecular weight gases on water at 25 degrees[J].J.Phys.Chem., 1974,78(22):2262-2266 |
[65] | Sagert N H, Quinn M J.Surface viscosities at high-pressure gas-liquid interfaces[J].J.Colloid Interface Sci., 1978,65(3):415-422 |
[66] | Stegeman D, Knop P A, Wijnands A J G, Westerterp K R. Interfacial area and gas holdup in a bubble column reactor at elevated pressures[J].Ind.Eng.Chem.Res., 1996,35(11):3842-3847 |
[67] | Zhao Y C, Chen G W, Yuan Q.Gas-liquid two-phase flow in microchannel at elevated pressure[J].Chem.Eng.Sci., 2013, accepted:10.1016/j.ces.2012.10.011 |
[68] | Kumar V, Paraschivoiu M, Nigam K D P.Single-phase fluid flow and mixing in microchannels[J].Chem.Eng.Sci., 2011,66(7):1329-1373 |
[69] | Hetsroni G, Mosyak A, Pogrebnyak E, Yarin L P.Micro-channels:reality and myth[J].J.Fluids Eng.-Trans. ASME, 2011,133(12):1-13 |
[70] | Sharp K V, Adrian R J.Transition from laminar to turbulent flow in liquid filled microtubes[J].Exp.Fluids, 2004,36(5):741-747 |
[71] | Wibel W, Ehrhard P.Experiments on the laminar/turbulent transition of liquid flows in rectangular microchannels[J].Heat Transf.Eng., 2009,30(1/2):70-77 |
[72] | Zhao Y C, Chen G W, Yuan Q.Liquid-liquid two-phase flow patterns in a rectangular microchannel[J].AIChE J., 2006,52(12):4052-4060 |
[73] | Su Y H, Chen G W, Zhao Y C, Yuan Q.Intensification of liquid-liquid two-phase mass transfer by gas agitation in a microchannel[J].AIChE J., 2009, 55(8):1948-1958 |
[74] | Su Y H, Zhao Y C, Chen G W, Yuan Q.Liquid-liquid two-phase flow and mass transfer characteristics in packed microchannels[J].Chem.Eng.Sci., 2010,65(13):3947-3956 |
[75] | Christopher G F, Anna S L.Microfluidic methods for generating continuous droplet streams[J].J.Phys.D:Appl.Phys., 2007,40(19):R319-R336 |
[76] | Serra C A, Chang Z Q.Microfluidic-assisted synthesis of polymer particles[J].Chem.Eng.Technol., 2008,31(8):1099-1115 |
[77] | Dendukuri D, Doyle P S.The synthesis and assembly of polymeric microparticles using microfluidics[J].Adv. Mater., 2009,21(41):4071-4086 |
[78] | Utada A S, Fernandez-Nieves A, Stone H A, Weitz D A.Dripping to jetting transitions in coflowing liquid streams[J].Phy.Rev.Lett., 2007,99(9):094502 |
[79] | de Menech M, Garstecki P, Jousse F, Stone H A.Transition from squeezing to dripping in a microfluidic T-shaped junction[J].J.Fluid Mech., 2008,595:141-161 |
[80] | Li Xi(李希), Chen Jianfeng(陈建峰), Chen Gantang(陈甘棠).Micromixing—the state of the art[J].Chem.React.Eng.Technol.(化学反应工程与工艺), 1994,10(2):103-112 |
[81] | Kockmann N.Transport Phenomena in Micro Process Engineering[M].Heidelberg,Berlin:Springer-Verlag,2008 |
[82] | Nguyen N T, Wu Z G.Micromixers — a review[J].J. Micromech.Microeng., 2005,15(2):R1-R16 |
[83] | He B, Burke B J, Zhang X, Zhang R, Regnier F E.A picoliter-volume mixer for microfluidic analytical systems[J].Anal.Chem., 2001,73(9):1942-1947 |
[84] | Ottino J M, Wiggins S.Designing optimal micromixers[J].Science, 2004,305(5683):485-486 |
[85] | Wiggins S, Ottino J M.Foundations of chaotic mixing[J].Phil.Trans.R.Soc.Lond.Series A-Math.Phys.Eng.Sci., 2004,362(1818):937-970 |
[86] | Mengeaud V, Josserand J, Girault H H.Mixing processes in a zigzag microchannel:finite element simulation and optical study[J].Anal.Chem., 2002,74(16):4279-86 |
[87] | Mouza A A, Patsa C M, Schnfeld F.Mixing performance of a chaotic micro-mixer[J].Chem.Eng.Res.Des., 2008,86(10A):1128-1134 |
[88] | Wong S H, Bryant P, Ward M, Wharton C.Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies[J].Sens.Actuator B-Chem., 2003,95(1/2/3):414-424 |
[89] | Bayer T, Himmler K, Hessel V.Don’t be baffled by static mixers[J].Chem.Eng., 2003,110(5):50-57 |
[90] | Su Y H, Chen G W, Yuan Q.Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel[J].AIChE J., 2012,58(6):1660-1670 |
[91] | Niu X Z, Lee Y K.Efficient spatial-temporal chaotic mixing in microchannels[J].J.Micromech.Microeng., 2003,13(3):454-462 |
[92] | Chang C C, Yang R J.Electrokinetic mixing in microfluidic systems[J].Microfluid Nanofluid, 2007,3(5):501-525 |
[93] | Wang Y, Zhe J, Chung B T F, Dutta P.A rapid magnetic particle driven micromixer[J].Microfluid Nanofluid, 2008,4(5):375-389 |
[94] | Ahmed D, Mao X, Juluri B K, Huang T J.A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles[J].Microfluid Nanofluid, 2009,7(5):727-731 |
[95] | Wiklund M, Green R, Ohlin M.Acoustofluidics 14:applications of acoustic streaming in microfluidic devices[J].Lab Chip., 2012,12(14):2438-2451 |
[96] | Hessel V, Lwe H, Schnfeld F.Micromixers—a review on passive and active mixing principles[J].Chem.Eng.Sci., 2005,60(8/9):2479 - 2501 |
[97] | Zhao Yuchao(赵玉潮), Ying Ying(应盈), Chen Guangwen(陈光文), Yuan Quan(袁权).Characterization of micro-mixing in T-shaped micro-mixer[J].J.Chem.Ind.Eng.(China)(化工学报), 2006,57(8):1884-1890 |
[98] | Ying Y, Chen G W, Zhao Y C, Li S L, Yuan Q.A high throughput methodology for continuous preparation of monodispersed nanocrystals in microfluidic reactors[J].Chem.Eng.J., 2008,135(3):209-215 |
[99] | Chen Guangwen(陈光文), Zhao Yuchao(赵玉潮), Yuan Quan(袁权).Advances in flow hydrodynamic and mass transfer characteristics of liquid phase in microscale[J].CIESC Journal(化工学报), 2010,61(7):1627-1635[ZK)] |
[100] | Aubin J, Ferrando M, Jiricny V.Current methods for characterising mixing and flow in microchannels[J].Chem.Eng.Sci., 2010,65(6):2065-2093 |
[101] | Harries N, Burns J R, Barrow D A, Ramshaw C.A numerical model for segmented flow in a microreactor[J].Int.J.Heat Mass Transf., 2003,46(17):3313-3322 |
[102] | Kashid M N, Gerlach I, Goetz S, Franzke J, Acker J F, Platte F, Agar D W, Turek S.Internal circulation within the liquid slugs of liquid-liquid slug flow capillary microreactor[J].Ind.Eng.Chem.Res., 2005,44(14):5003-5010 |
[103] | Kashid M N, Agar D W.Hydrodynamics of liquid-liquid slug flow capillary microreactor:flow regimes, slug size and pressure drop[J].Chem.Eng.J., 2007,131(1/2/3):1-13 |
[104] | Bringer M R, Gerdts C J, Song H, Tice J D, Ismagilov R F.Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets[J].Phil. Trans. R. Soc. Lond. Series A-Math.Phys.Eng.Sci., 2004,362(1818):1087-1104 |
[105] | Duraiswamy S, Khan S A.Droplet-based microfluidic synthesis of anisotropic metal nanocrystals[J].Small, 2009,5(24):2828-2834 |
[106] | Jahn A, Reiner J E, Vreeland W N, DeVoe D L, Locascio L E, Gaitan M.Preparation of nanoparticles by continuous-flow microfluidics[J].J. Nanopart Res., 2008,10(6):925-934 |
[107] | Kashid M N, Renken A, Kiwi-Minsker L.Gas-liquid and liquid-liquid mass transfer in microstructured reactors[J].Chem.Eng.Sci., 2011,66(17):3876-3897 |
[108] | Zhao Y C, Chen G W, Yuan Q.Liquid-liquid two-phase mass transfer in the T-junction microchannels[J].AIChE J., 2007,53(12):3042-3053 |
[109] | Dessimoz A L, Cavin L, Renken A, Kiwi-Minsker L.Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors[J].Chem.Eng.Sci., 2008,63(16):4035-4044 |
[110] | Xu J H, Li S W, Tan J, Wang Y J, Luo G S.Preparation of highly monodisperse droplet in a T-junction microfluidic device[J].AIChE J., 2006,52(9):3005-3010 |
[111] | Xu J H, Luo G S, Li S W, Chen G G.Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties[J].Lab Chip, 2006,6(1):131-136 |
[112] | Xu J H, Tan J, Li S W, Luo G S.Enhancement of mass transfer performance of liquid-liquid system by droplet flow in microchannels[J].Chem.Eng J., 2008,141(1/2/3):242-249 |
[113] | Khan M G, Fartaj A.A review on microchannel heat exchangers and potential applications[J].Int.J.Energy Res., 2011,35(7):553-582 |
[114] | Cao H S, Chen G W, Yuan Q.Testing and design of a microchannel heat exchanger with multiple plates[J].Ind.Eng.Chem. Res., 2009,48(9):4535-4541 |
[115] | Tuckerman D B, Pease R F W.High-performance heat sinking for VLSI[J].IEEE Electron. Device Lett., 1981,2(5):126-129 |
[116] | Little W A.Microminiature refrigeration[J].Rev. Sci. Instrum., 1984,55(5):661-680 |
[117] | Bahukudumbi P, Beskok A.A phenomenological lubrication model for the entire Knudsen regime[J].J.Micromech.Microeng., 2003,13(6):873-884 |
[118] | Palm B.Heat transfer in microchannels[J].Microscale Thermophys.Eng., 2001,5(3):155-175 |
[119] | Kim M H, Lee S Y, Sunil S M, Ralph L W.Microchannel heat exchanger design for evaporator and condenser applications[J].Adv.Heat Transf., 2003,37:297-429 |
[120] | Dittus F W, Boelter L M K.Heat transfer in automobile radiators of the tubular type[J].Int.Commun.Heat Mass Transf., 1985,12(1):3-22 |
[121] | Gnielinski V.New equations for heat and mass transfer in turbulent pipe and channel flow[J].Int.Chem.Eng., 1976,16(2):359-368 |
[122] | Lerou P P P M, Veenstra T T, Burger J F, ter Brake H J M, Rogalla H.Optimization of counterflow heat exchanger geometry through minimization of entropy generation[J].Cryogenics, 2005,45(10/11):659-669 |
[123] | Khan W A, Yovanovich M M, Culham J R.Optimization of microchannel heat sinks using entropy generation minimization method//22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium[C].Dallas,TX,2006:78-86 |
[124] | Rosa P, Karayiannis T G, Collins M W.Single-phase heat transfer in microchannels:the importance of scaling effects[J].Appl.Therm.Eng., 2009,29(17/18):3447-3468 |
[125] | Lazarek G M, Black S H.Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113[J].Int.J.Heat Mass Transf.,1982, 25(7):945-960 |
[126] | Ravigururajan T S.Impact of channel geometry on two-phase flow heat transfer characteristics of refrigerants in microchannel heat exchangers[J].J.Heat Transf.-Trans. ASME, 1998,120(2):485-491 |
[127] | Warrier G R, Dhir V K, Momoda L A.Heat transfer and pressure drop in narrow rectangular channels[J].Exp.Therm.Fluid Sci., 2002,26(1):53-64 |
[128] | Qu W L, Mudawar I.Flow boiling heat transfer in two-phase micro-channel heat sinks(Ⅰ):Experimental investigation and assessment of correlation methods[J].Int.J.Heat Mass Transf., 2003,46(15):2755-2771 |
[129] | Lee J, Mudawar I.Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications(Ⅱ):Heat transfer characteristics[J].Int.J.Heat Mass Transf., 2005,48(5):941-955 |
[130] | Ko ?瘙 塂 ar A, Kuo C J, Peles Y.Boiling heat transfer in rectangular microchannels with reentrant cavities[J].Int.J.Heat Mass Transf., 2005,48(23/24):4867-4886 |
[131] | Qu W L, Yoon S M, Mudawar I.Two-phase flow and heat transfer in rectangular micro-channels[J].J. Electron. Packag., 2004,126(3):288-300 |
[132] | Kikutani Y, Hibara A, Uchiyama K, Hisamoto H, Tokeshi M, Kitamori T.Pile-up glass microreactor[J].Lab Chip, 2002,2(4):193-196 |
[133] | Commenge J M, Falk L, Corriou J P, Matlosz M.Optimal design for flow uniformity in microchannel reactors[J].AIChE J., 2002,48(2):345-358 |
[134] | Delsman E R, Pierik A, De Croon M H J M, Kramer G J, Schouten J C.Microchannel plate geometry optimization for even flow distribution at high flow rates[J].Chem. Eng. Res.Des., 2004,82(A2):267-273 |
[135] | Griffini G, Gavriilidis A.Effects of microchannel plate design on fluid flow uniformity at low flow rates[J].Chem.Eng.Technol., 2007,30(3):395-406 |
[136] | Pan M Q, Tang Y, Pan L, Lu L S.Modeling of velocity distribution among microchannels with triangle manifolds[J].AIChE J., 2009,55(8):1969-1982 |
[137] | Ordonez J C, Bejan A, Cherry R S.Designed porous media:optimally nonuniform flow structures connecting one point with more points[J].Int.J.Therm.Sci., 2003,42(9):857-870 |
[138] | Luo L A, Fan Z W, Le Gall H, Zhou X G, Yuan W K. Experimental study of constructal distributor for flow equidistribution in a mini crossflow heat exchanger(MCHE)[J].Chem.Eng.Process., 2008,47(2):229-236 |
[139] | Fan Z W, Zhou X G, Luo L A, Yuan W K.Experimental investigation of the flow distribution of a 2-dimensional constructal distributor[J].Exp.Therm.Fluid Sci., 2008,33(1):77-83 |
[140] | Yue J, Boichot R, Luo L A, Gonthier Y, Chen G W, Yuan Q.Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors[J].AIChE J., 2010,56(2):298-317 |
[141] | Inoue T, Schmidt M A, Jensen K F.Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen[J].Ind. Eng. Chem. Res., 2007,46(4):1153-1160 |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[7] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[8] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[12] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[13] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[14] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[15] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||