李恒1, 柯蓝婷2, 王海涛2, 郑艳梅2, 王远鹏2, 何宁2, 李清彪1,2,3
收稿日期:
2013-12-31
修回日期:
2014-02-18
出版日期:
2014-05-05
发布日期:
2014-05-05
通讯作者:
李清彪
基金资助:
国家重点基础研究发展计划项目(2013CB733505)。
LI Heng1, KE Lanting2, WANG Haitao2, ZHENG Yanmei2, WANG Yuanpeng2, HE Ning2, LI Qingbiao1,2,3
Received:
2013-12-31
Revised:
2014-02-18
Online:
2014-05-05
Published:
2014-05-05
Supported by:
supported by the National Basic Research Program of China (2013CB733505).
摘要: 低劣生物质厌氧消化可以减少温室气体的排放并且生产生物甲烷作为能源。介绍了关于厌氧消化过程、底物的相关理论,还对目前主要用于厌氧产甲烷过程研究的数学模型以及碳氮磷转化的模拟研究进行了综述。其中,一级动力学模型是最为简单的数学模型,其可以通过简单的计算得到整个过程中甲烷产量随着时间的变化曲线,但是只限于较准确模拟甲烷产率的ADM1模型相对发展最为全面、应用最为广泛,且能够针对具体要研究的对象进行模型的修改。同时总结了较为常见的底物厌氧产甲烷研究模型、研究对象及结果、已有碳/氮/磷转化模拟研究及相关研究,并对开展针对厌氧产甲烷过程中碳氮磷转化的模拟研究进行了展望。
中图分类号:
李恒, 柯蓝婷, 王海涛, 郑艳梅, 王远鹏, 何宁, 李清彪. 低劣生物质厌氧产甲烷过程的模拟研究进展[J]. 化工学报, DOI: 10.3969/j.issn.0438-1157.2014.05.004.
LI Heng, KE Lanting, WANG Haitao, ZHENG Yanmei, WANG Yuanpeng, HE Ning, LI Qingbiao. Simulation research on anaerobic digestion biogas generation from low-grade biomass[J]. CIESC Journal, DOI: 10.3969/j.issn.0438-1157.2014.05.004.
[1] | Fehrenbach H, Giegrich J, Reinhardt G, Sayer U, Gretz M, Lanje K, Schmitz J. Kriterien einer nachhaltigen Bioenergienutzung im globalen Maßstab[J]. UBA-Forschungsbericht, 2008, 206: 41-112 |
[2] | Andrews J F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates[J]. Biotechnology and Bioengineering, 1968, 10(6): 707-723 |
[3] | Graef S P, Andrews J F. Mathematical modeling and control of anaerobic digestion[J]. AIChE Symposium Series, 1974, 136: 101-131 |
[4] | Angelidaki I I, Ellegaard L, Ahring B K. A comprehensive model of anaerobic bioconversion of complex substrates to biogas[J]. Biotechnology and Bioengineering, 1999, 63(3): 363-372 |
[5] | Batstone D J, Keller J, Angelidaki I, Kalyuzhnyi S V, Pavlostathis S G. The IWA anaerobic digestion model No.1 (ADM1)[J]. Water Science and Technology, 2002, 45: 65-73 |
[6] | Vavilin V A, Lokshina L Y, Flotats X, Angelidaki I. Anaerobic digestion of solid material: multidimensional modeling of continuous-flow reactor with nonuniform influent concentration distributions[J]. Biotechnology and Bioengineering, 2007, 97(2): 354-366 |
[7] | Gujer W, Zehnder A J B. Conversion processes in anaerobic digestion[J]. Water Science and Technology, 1983, 15: 127-167 |
[8] | Karakashev D, Bastone D, Angelidaki I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors[J]. Applied and Environment Microbiology, 2005, 71: 331-338 |
[9] | Peter Weiland. Biogas production: current state and perspectives[J]. Applied and Environment Microbiology, 2010, 85(4):849-860 |
[10] | Triolo J M, Sommer S G, Moller H B, Weisbjerg M R, Jiang X Y. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential[J]. Bioresource Technology, 2011, 102(20): 9395-9402 |
[11] | Baserga U. Landwirtschaftliche Co-Vergaerungs-Biogasanlagen : Biogas aus organischen Reststoffen und Energiegras[M]. Taenikon: FAT, 1998 |
[12] | Rodrigo A Labatut, Largus T Angenent, Norman R Scott. Biochemical methane potential and biodegradability of complex organic substrates[J]. Bioresource Technology, 2011, 102(3): 2255-2264 |
[13] | Li Yeqing, Zhang Ruihong, Liu Guangqing, Chen Chang, He Yanfeng, Liu Xiaoying. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates[J]. Bioresource Technology, 2013, 149: 565-569 |
[14] | Buswell A M, Mueller H F. Mechanism of methane fermentation[J]. Industrial and Engineering Chemistry, 1952, 44(3): 550-552 |
[15] | Li Y Q, Feng L, Zhang R H, He Y F, Liu X Y, Xiao X, Ma X X, Chen C, Liu G Q. Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover[J]. Applied and Environment Microbiology, 2013, 171(1): 117-127 |
[16] | Kaparaju P, Serrano M, Thomsen A B, Kongjan P, Angelidaki I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept[J]. Bioresource Technology, 2009, 100(9): 2562-2568 |
[17] | Triolo J M, Sommer S G, Moller H B, Weisbjerg M R, Jiang X Y. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential[J]. Bioresource Technology, 2011, 102(20): 9395-9402 |
[18] | Müller J. Thermische, chemische und biochemische Desintegrationsverfahren [J]. Korresp Abwasser, 2003, 50: 796-804 |
[19] | Mshandete A, Bjornsson L, Kivaisi A K, Rubindamayugi M S T, Matthiasson B. Effect of particle size on biogas yield from sisal fibre waste[J]. Renewable Energy, 2006, 31(14): 2385-2392 |
[20] | Palmowski L M, Muller J. Influence of the size reduction of organic waste on their anaerobic digestion[J]. Water Science and Technology, 2000, 41(3): 155-162 |
[21] | Hartmann H, Angelidaki I, Ahring B K. Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration[J]. Water Science and Technology, 2000, 41(3): 145-153 |
[22] | Mata-Alvarez J, Mac_e S, Llabr_es P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives[J]. Bioresource Technology, 2000, 74(1): 3-16 |
[23] | Kono T, Asai T. Kinetics of continuous cultivation[J]. Biotechnology and Bioengineering, 1969, 11(1): 19-36 |
[24] | Metcalf, Eddy I. Wastewater Engineering: Treatment Disposal and Reuse[M]. New York: McGraw-Hill, 2003 |
[25] | Pavlostathis S G, Giraldo-Gomez E. Kinetics of anaerobic treatment: a critical review[J]. Critical Reviews in Environmental Control, 1991, 21(5/6): 411-490 |
[26] | Monod J. The growth of bacterial cultures[J]. Annual Review of Neuroscience, 1949, 3: 371-394 |
[27] | Contois D E. Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures[J]. Journal of General Microbiology, 1959, 21(1): 40-50 |
[28] | Chen Y R, Hashimoto A G. Substrate utilization kinetic model for biological treatment processes[J]. Biotechnology and Bioengineering, 1980, 22(10): 2081-2095 |
[29] | Grau P, Dohányos M, Chudoba J. Kinetics of multicomponent substrate removal by activated sludge[J]. Water Research, 1975, 9(7): 637-642 |
[30] | Lokshina L Y, Vavilin V A, Kettunen R H, Rintala J A, Holliger C. Evaluation of kinetic coefficients using integrated Monod and Haldane models for low-temperature acetoclastic methanogenesis[J]. Water Research, 2001, 35(12): 2913-2922 |
[31] | Bolzonella D, Fatone F, Pavan P, Cecchi F. Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds[J]. Industrial & Engineering Chemistry Research, 2005, 44(10): 3412-3418 |
[32] | Valentini A, Garruti G, Rozzi A, Tilche A. Anaerobic degradation kinetics of particulate organic matter: a new approach[J]. Water Science and Technology,1997, 36(6/7): 239-246 |
[33] | Liebetrau J, Kraft E, Bidlingmaier W. The influence of the hydrolysis rate of co-substrates on process behaviour//Proceedings of the Tenth World Congress on Anaerobic[C]. 2004 |
[34] | Vavilin V A, Lokshina L Y, Jokela J P Y, Rintala J A. Modeling solid waste decomposition[J]. Bioresource Technology, 2004, 94(1): 69-81 |
[35] | Hobson P N. The kinetics of anaerobic digestion of farm wastes[J]. Journal of Chemical Technology and Biotechnology, 1983, 33(1): 1-20 |
[36] | Rotter B E, Barry D A, Gerhard J I, Small J S. Parameter and process significance in mechanistic modeling of cellulose hydrolysis[J]. Bioresource Technol., 2009, 99(13):5738-5748 |
[37] | Mosey F E. Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose[J]. Water Science and Technology, 1983, 15(8/9): 209-232 |
[38] | Tosun I, Gonullu M T, Gunay A. Anaerobic digestion and methane generation potential of rose residue in batch reactors[J]. J. Environmental Geochemistry and Health, 2004, 39 (4): 915-925 |
[39] | Vavilin V A, Rytov S V, Lokshina L Y. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter[J]. Bioresource Technol., 1996, 56(2/3): 229-237 |
[40] | Henze M, Grady C P L, Gujer W, Marais G V R, Matsuo T. Activated Sludge Model No. 1. Scientific and Technical Report No. 1[M]. London: IWA Publishing, 1987 |
[41] | Henze M, Gujer W, Mino T, Matsuo T, Wentzel M C, Marais G R. Activated Sludge Model No. 2d. Scientific and Technical Report No. 3[M]. London: IWA Publishing, 1999 |
[42] | Henze M, Gujer W, Mino T, van Loosdrecht M C M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Report No. 9[M]. London: IWA Publishing, 2000 |
[43] | Derbal K, Bencheikh-Lehocine M, Cecchi F, Meniai A H, Pavan P. Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition[J]. Bioresource Technology, 2010, 100(4): 1539-1543 |
[44] | Fezzani B, Cheikh R. Implementation of IWA anaerobic digestion model No.1(ADM1) for simulating the thermophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a semi-continuous tubular digester[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 75-88 |
[45] | Astals S, Esteban-Gutiérrez M, Fernández-Arévalo T, Aymerich E, García-Heras J L, Mata-Alvarez J. Anaerobic digestion of seven different sewage sludges: a biodegradability and modelling study[J]. Water Research, 2013, 47(16): 6033-6043 |
[46] | Mairet F, Bernard O, Ras M, Lardon L, Steyer J P. Modeling anaerobic digestion of microalgae using ADM1[J]. Bioresource Technology, 2011, 102(13): 6823-6829 |
[47] | Ramirez I, Mottet A, Carrère H, Déléris S, Vedrenne F, Steyer J P. Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge[J]. Water Research, 2009, 43(14): 3479-3492 |
[48] | Astals S, Ariso M, Galí A, Mata-Alvarez J. Co-digestion of pig manure and glycerine: experimental and modelling study[J]. Journal of Environmental Management, 2011, 92(4): 1091-1096 |
[49] | Galí A, Benabdallah T, Astals S, Mata-Alvarez J. Modified version of ADM1 model for agro-waste application[J]. Bioresource Technology, 2009, 100(11): 2783-2790 |
[50] | Ivan Ramirez, Alexis Mottet, Hélène Carrèrea.Modified ADM1 disintegration / hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge[J]. Water Research, 2009, 43(14): 3479-3492 |
[51] | Galí A,Benabdallah T,Astals S.Modified version of ADM1 model for agro-waste application[J]. Bioresource Technology,2009, 100(11): 2783-2790 |
[52] | Guo Jianbin, Dong Renjie, Clemens Joachim, Wei Wanga. Kinetics evaluation of a semi-continuously fed anaerobic digester treating pig manure at two mesophilic temperatures[J]. Water Research, 2013, 47(15): 5743-5750 |
[53] | Hamed M El-Mashad, Zhang Ruihong. Biogas production from co-digestion of dairy manure and food waste[J]. Bioresource Technology, 2010, 101(11): 4021-4028 |
[54] | Krishania M, Vijay V K, Chandra R. Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay energy[J]. Bioresource Technology, 2013, 57(1): 359-367 |
[55] | Biswas J, Chowdhury R, Bhattacharya P. Mathematical modeling for the prediction of biogas generation characteristics of an anaerobic digester based on food/vegetable residues[J]. Biomass and Bioenergy, 2007, 31(1): 80-86 |
[56] | Manfred Lubkena, Marc Wicherna, Markus Schlattmannb, Andreas Gronauerb, Harald Horn. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops[J]. Water Research, 2007, 41(18): 4085-4096 |
[57] | Thomas Amon, Barbara Amon, Vitaliy Kryvoruchko, Werner Zollitsch, Karl Mayer, Leonhard Gruber. Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield[J]. Agriculture, Ecosystems and Environment, 2007, 118(1/2/3/4): 173-182 |
[58] | Benjamin C Lyseng, Wenche Bergland, Deshai Botheju, Finn Haugen, Rune Bakke. Biogas Reactor Modeling with ADM1[M]. Norway: Faculty of Technology (Porsgrunn), 2012 |
[59] | Tiedje J M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium//Biology of Anaerobic Microorganisms[M]. Zehnder A J B, ed. New York: Wiley, 1988: 179-244 |
[60] | Knowles R. Denitrification[J]. Microbiological Reviews, 1982, 46(1): 43-70 |
[61] | Konrad Koch, Manfred Lübken, Tito Gehring , Marc Wichern, Harald Horn. Biogas from grass silage measurements and modeling with ADM1[J]. Bioresource Technology, 2010, 101(21): 8158-8165 |
[62] | Francis Mairet, Olivier Bernard, Monique Ras, Laurent Lardon, Jean-Philippe Steyer. A dynamic model for anaerobic digestion of microalgae//18th IFAC World Congress[C]. Milano, Italy, 2011 |
[63] | Wild D, Kisliakova A, Siegrist H. Prediction of recycle phosphorus loads from anaerobic digestion[J]. Water Research, 1997, 31(9): 2300-2308 |
[64] | Carliell-Marquet C M, Wheatley A D. Measuring metal and phosphorous speciation in P-rich anaerobic digesters[J]. Water Science and Technology, 2002, 45(10): 305-312 |
[65] | Gungor K, Karthikeyan K G. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters[J]. Bioresource Technology, 2008, 99(15): 425-436 |
[66] | Li Y, Lei Z, Zhang Z, Sugiura N. Effects of nutrient addition on phenol biodegradation rate in biofilm reactors for hypersaline wastewater treatment[J]. Environmental Technology, 2006, 27(5): 511-520 |
[67] | Lei Zhongfang, Chen Jiayi, Zhang Zhenya, Sugiura Norio. Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation[J]. Bioresource Technology, 2010, 101(12): 4343-4348 |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[5] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[6] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[7] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[8] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[9] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[10] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[11] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[12] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[13] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[14] | 黄玉龙, 吕凡, 仇俊杰, 章骅, 何品晶. 易腐垃圾厌氧消化沼液理化性质及VOCs分子特征[J]. 化工学报, 2023, 74(3): 1275-1285. |
[15] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||