[1] |
Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. Int. Ed., 2011, 50(49): 11586-11589
|
[2] |
Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn P L, De Weireld G, Vimont A, Daturi M, Chang J S. Why hybrid porous solids capture greenhouse gases? [J]. Chem. Soc. Rev., 2011, 40(2): 550-562
|
[3] |
Wu D, Yang Q, Zhong C, Liu D, Huang H, Zhang W, Maurin G. Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas[J]. Langmuir, 2012, 28(33): 12094-12099
|
[4] |
Liu Chang(刘畅), Lu Xiaohua(陆小华), Yang Zhuhong(杨祝红), Zhu Yudan(朱育丹),Feng Xin(冯新).Leap-forward development strategy of China's biomethane industry based on new developments of chemical engineering[J]. Chemical Industry and Engineering Progress (化工进展),2013, 32(4): 786-790
|
[5] |
Chen Jiawei(陈加伟), Chen Huiru(陈慧如), Qi Hong(漆红), Xu Nangping(徐南平). Fabrication and hydrothermal stability of microporous Nb2O5 membrane for pre-combustion capture of CO2[J]. CIESC Journal (化工学报), 2013, 64(11): 4060-4067
|
[6] |
Yang Q, Wiersum A D, Llewellyn P L, Guillerm V, Serre C, Maurin G. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration[J]. Chem. Commun., 2011, 47: 9603-9605
|
[7] |
Férey G. Hybrid porous solids: past, present, future[J]. Chem. Soc. Rev., 2008, 37(1): 191-214
|
[8] |
Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714
|
[9] |
Yang Qingyuan(阳庆元), Liu Dahuan(刘大欢), Zhong Chongli(仲崇立). Computational study of metal-organic frameworks[J]. CIESC Journal (化工学报), 2009, 60(4): 805-819
|
[10] |
Liu D, Zhong C. Understanding gas separation in metal-organic frameworks using computer modeling[J]. J. Mater. Chem., 2010, 20(46): 10308-10318
|
[11] |
Huang H, Zhang W, Liu D, Liu B, Chen G, Zhong C. Effect of temperature on gas adsorption and separation in ZIF-8: a combined experimental and molecular simulation study[J]. Chem. Eng. Sci., 2011, 66: 6297-6305
|
[12] |
Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009, 38(5): 1450-1459
|
[13] |
Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angew. Chem. Int. Ed., 2007, 46(40): 7548-7558
|
[14] |
Jia J, Xu F J, Long Z, Hou X D, Sepaniak M J. Metal-organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg+[J]. Chem. Commun., 2013, 49(41): 4670-4672
|
[15] |
Plant D F, Maurin G, Deroche I, Gaberova L, Llewellyn P L. CO2 adsorption in alkali cation exchanged Y faujasites: a quantum chemical study compared to experiments[J]. Chem. Phys. Lett., 2006, 426(4/5/6): 387-392
|
[16] |
Ghoufi A, Gaberova L, Rouquerol J, Vincent D, Llewellyn P L, Maurin G. Adsorption of CO2, CH4 and their binary mixture in Faujasite NaY: a combination of molecular simulations with gravimetry-manometry and microcalorimetry measurements[J]. Microporous Mesoporous Mater., 2009, 119(1/2/3): 117-128
|
[17] |
Dreisbach F, Staudt R, Keller J U. High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon[J]. Adsorption, 1999, 5(3): 215-227
|
[18] |
Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev., 2012, 112(2): 724-781
|
[19] |
Czaja A U, Trukhan N, Müeller U. Industrial applications of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5): 1284- 1293
|
[20] |
Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastré J. Metal-organic frameworks-prospective industrial applications[J]. J. Mater. Chem., 2006, 16(7): 626-636
|
[21] |
Couck S, Denayer J F M, Baron G V, Rémy T, Gascon J, Kapteijn F. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4 [J]. J. Am. Chem. Soc., 2009, 131(18): 6326-6327
|
[22] |
Torrisi A, Bell R G, Mellot-Draznieks C. Functionalized MOFs for enhanced CO2 capture[J]. Cryst. Growth Des., 2010, 10(7): 2839- 2841
|
[23] |
Yang Q, Vaesen S, Ragon F, Wiersum A D, Wu D, Lago A, Devic T, Martineau C, Taulelle F, Llewellyn P L, Jobic H, Zhong C, Serre C, De Weireld G, Maurin G. A water stable metal-organic frameworks with optimal features for CO2 capture[J]. Angew. Chem. Ind. Ed., 2013, 52(39): 10316-10320
|
[24] |
Greathouse J A, Allendorf M D. The interaction of water with MOF-5 simulated by molecular dynamics[J]. J. Am. Chem. Soc., 2006, 128 (33): 10678-10679
|
[25] |
Saha D, Deng S. Structural stability of metal organic framework MOF-177 [J]. J. Phys. Chem. Lett., 2010, 1(1): 73-78
|
[26] |
Park K S, Ni Z, Cōté A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc. Natl. Acad. Sci., 2006, 103(27): 10186-10191
|
[27] |
Kang I J, Khan N A, Haque E, Jhung S H. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions[J]. Chem. Eur. J., 2011, 17(23): 6437-6442
|
[28] |
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J. Am. Chem. Soc., 2008, 130(42): 13850-13851
|
[29] |
Jakobsen S, Gianolio D, Wragg D S, Nilsen M H, Emerich H, Bordiga S, Lamberti C, Olsbye U, Tilset M, Lillerud K P. Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66 [J]. Phys. Rev. B, 2012, 86(12): 125429
|
[30] |
Tanabe K K, Cohen S M. Postsynthetic modification of metal-organic frameworks—a progress report[J]. Chem. Soc. Re., 2011, 40:498-519
|
[31] |
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472
|
[32] |
Yang C, Wang X, Omary M A. Fluorous metal-organic frameworks for high-density gas adsorption[J]. J. Am. Chem. Soc., 2007, 129(50): 15454-15455
|
[33] |
Debatin F, Behrens K, Weber J, Baburin I A, Thomas A, Schmidt J, Senkovska I, Kaskel S, Kelling A, Hedin N, Bacsik Z, Leoni S, Seifert G, Jäger C, Günter C, Schilde U, Friedrich A, Holdt H J. An isoreticular family of microporous metal-organic frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate: syntheses, structures and properties[J]. Chem. Eur. J., 2012, 18(37): 11630- 11640
|
[34] |
Zhao Y, Wu H, Emge T J, Gong Q, Nijem N, Chabal Y J, Kong L, Langreth D C, Liu H, Zeng H, Li J. Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures[J]. Chem. Eur. J., 2011, 17(18): 5101-5109
|
[35] |
Colombo V, Montoro C, Maspero A, Palmisano G, Masciocchi N, Galli S, Barea E, Navarro J A R. Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification[J]. J. Am. Chem. Soc., 2012, 134(30): 12830- 12843
|
[36] |
Mu W, Liu D, Yang Q, Zhong C. Computational study of the effect of organic linkers on natural gas upgrading in metal-organic frameworks [J]. Microporous Mesoporous Mater., 2010, 130(1/2/3): 76-82
|
[37] |
Zhang W, Huang H, Zhong C, Liu D. Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks:a combined experimental and molecular simulation study[J]. Phys. Chem. Chem. Phys., 2012, 14(7): 2317-2325
|
[38] |
Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G. Flexible porous metal-organic frameworks for a controlled drug delivery[J]. J. Am. Chem. Soc., 2008, 130(21): 6774-6780
|
[39] |
Liu X M, Rather S U, Li Q, Lueking A, Zhao Y, Li J. Hydrogenation of CuBTC framework with the introduction of a PtC hydrogen spillover catalyst[J]. J. Phys. Chem. C, 2012, 116(5): 3477-3485
|
[40] |
Zhang L, Hu Y H. A systematic investigation of decomposition of nano Zn4O(C8H4O4)3 metal-organic framework[J]. J. Phys. Chem. C, 2010, 114(6): 2566-2572
|
[41] |
Demessence A, Horcajada P, Serre C, Boissiere C, Grosso D, Sanchez C, Férey G. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr) [J]. Chem. Commun., 2009, 46: 7149-7151
|
[42] |
Haouas M, Volkringer C, Loiseau T, Férey G, Taulelle F. Monitoring the activation process of the giant pore MIL-100(Al) by solid state NMR[J]. J. Phys. Chem. C, 2011, 115(36): 17934-17944
|
[43] |
Férey G, Serre C, Mellot-Draznieks C, Millange F, Surble S, Dutour J, Margiolaki I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction [J]. Angew. Chem. Int. Ed., 2004, 43(46): 6296 -6301
|
[44] |
Horcajada P, Surblé S, Serre C, Hong D-Y, Seo Y-K, Chang J-S, Grenèche J-M, Margiolaki I, Férey G. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores[J]. Chem. Commun., 2007, 27: 2820-2822
|
[45] |
Deng H, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084): 1018-1023
|
[46] |
Yang J, Grzech A, Mulder F M, Dingemans T J. Methyl modified MOF-5: a water stable hydrogen storage material[J]. Chem. Commun., 2011, 47(18): 5244-5246
|
[47] |
Kandiah M, Nilsen M H, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli E A, Bonino F, Lillerud K P. Synthesis and stability of tagged UiO-66 Zr-MOFs [J]. Chem. Mater., 2010, 22(24): 6632-6640
|
[48] |
Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chem. Eur. J., 2004, 10(6): 1373-1382
|
[49] |
Maes M, Vermoortele F, Alaerts L, Couck S, Kirschhock C E A, Denayer J F M, de Vos D E. Separation of styrene and ethylbenzene on metal-organic frameworks: analogous structures with different adsorption mechanisms[J]. J. Am. Chem. Soc., 2010, 132(43): 15277- 15285
|
[50] |
Lebedev O I, Millange F, Serre C, Van Tendeloo G, Ferey G. First direct imaging of giant pores of the metal-organic framework MIL-101[J]. Chem. Mater., 2005, 17(26): 6525-6527
|
[51] |
Wu L, Xue M, Qiu S-L, Chaplais G, Simon-Masseron A, Patarin J. Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy[J]. Microporous Mesoporous Mater., 2012, 157(SI): 75-81
|
[52] |
Biswas S, Ahnfeldt T, Stock N. New functionalized flexible Al-MIL-53-X (X =—Cl, —Br, —CH3, —NO2, —(OH)2) solids: syntheses, characterization, sorption, and breathing behavior[J]. Inorg. Chem., 2011, 50(19): 9518-9526
|
[53] |
Biswas S, Vanpoucke D E P, Verstraelen T, Vandichel M, Couck S, Leus K, Liu Y Y, Waroquier M, van Speybroeck V , Denayer J F M, van der Voort P. New functionalized metal-organic frameworks MIL-47-X (X =—Cl, —Br, —CH3, —CF3, —OH, —OCH3): synthesis, characterization, and CO2 adsorption properties[J]. J. Phys. Chem. C, 2013, 117(44): 22784-22796
|
[54] |
Zhang Z, Li Z, Li J. Computational study of adsorption and separation of CO2, CH4, and N2 by an rht-type metal-organic framework[J]. Langmuir, 2012, 28(33): 12122-12133
|