李亮莎1, 王可可1, 黄宏亮1, 阳庆元1, 张轶2, 王少华2, 吴平易3, 兰玲3, 刘大欢1, 仲崇立1
收稿日期:
2013-12-26
修回日期:
2014-01-20
出版日期:
2014-05-05
发布日期:
2014-05-05
通讯作者:
王少华,兰玲
基金资助:
国家重点基础研究发展计划项目(2013CB733503);国家自然科学基金项目(21136001,21322603);教育部新世纪优秀人才项目(NCET-12-0755)。
LI Liangsha1, WANG Keke1, HUANG Hongliang1, YANG Qingyuan1, ZHANG Yi2, WANG Shaohua2, WU Pingyi3, LAN Ling3, LIU Dahuan1, ZHONG Chongli1
Received:
2013-12-26
Revised:
2014-01-20
Online:
2014-05-05
Published:
2014-05-05
Supported by:
supported by the National Basic Research Program of China ( 2013CB733503), the National Natural Science Foundation of China ( 21136001,21322603) and the Program for New Century Excellent Talents in University (NCET-12-0755).
摘要: 采用高温高浓度的溶剂热方法,合成了具有高结晶度的一种金属-有机骨架(metal-organic framework,MOF)材料UiO-66(Hf),并发现该材料在沸水、酸碱等苛刻条件下具有非常好的化学稳定性。为了提高其对气体的吸附分离性能,进一步采用具有不同官能团的有机配体——氨基对苯二甲酸(H2BDC-NH2)、硝基对苯二甲酸(H2BDC-NO2)、溴对苯二甲酸(H2BDC-Br),设计合成了孔道表面具有不同化学性质的三种新型铪MOF材料,且这些材料与UiO-66(Hf)具有相同的拓扑结构。同时,气体吸附实验结果表明,极性基团的引入,尤其是氨基的引入,能极大提高材料对CO2/N2以及CO2/CH4体系的分离性能。这为以后应用于化工体系分离的新型多孔材料合成提供了理论指导。
中图分类号:
李亮莎, 王可可, 黄宏亮, 阳庆元, 张轶, 王少华, 吴平易, 兰玲, 刘大欢, 仲崇立. 高稳定铪金属-有机骨架材料的合成及二氧化碳捕获性能[J]. 化工学报, DOI: 10.3969/j.issn.0438-1157.2014.05.021.
LI Liangsha, WANG Keke, HUANG Hongliang, YANG Qingyuan, ZHANG Yi, WANG Shaohua, WU Pingyi, LAN Ling, LIU Dahuan, ZHONG Chongli. Synthesis of exceptional stable Hf-based metal-organic frameworks:characterization, stability and CO2 adsorption performance[J]. CIESC Journal, DOI: 10.3969/j.issn.0438-1157.2014.05.021.
[1] | Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. Int. Ed., 2011, 50(49): 11586-11589 |
[2] | Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn P L, De Weireld G, Vimont A, Daturi M, Chang J S. Why hybrid porous solids capture greenhouse gases? [J]. Chem. Soc. Rev., 2011, 40(2): 550-562 |
[3] | Wu D, Yang Q, Zhong C, Liu D, Huang H, Zhang W, Maurin G. Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas[J]. Langmuir, 2012, 28(33): 12094-12099 |
[4] | Liu Chang(刘畅), Lu Xiaohua(陆小华), Yang Zhuhong(杨祝红), Zhu Yudan(朱育丹),Feng Xin(冯新).Leap-forward development strategy of China's biomethane industry based on new developments of chemical engineering[J]. Chemical Industry and Engineering Progress (化工进展),2013, 32(4): 786-790 |
[5] | Chen Jiawei(陈加伟), Chen Huiru(陈慧如), Qi Hong(漆红), Xu Nangping(徐南平). Fabrication and hydrothermal stability of microporous Nb2O5 membrane for pre-combustion capture of CO2[J]. CIESC Journal (化工学报), 2013, 64(11): 4060-4067 |
[6] | Yang Q, Wiersum A D, Llewellyn P L, Guillerm V, Serre C, Maurin G. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration[J]. Chem. Commun., 2011, 47: 9603-9605 |
[7] | Férey G. Hybrid porous solids: past, present, future[J]. Chem. Soc. Rev., 2008, 37(1): 191-214 |
[8] | Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714 |
[9] | Yang Qingyuan(阳庆元), Liu Dahuan(刘大欢), Zhong Chongli(仲崇立). Computational study of metal-organic frameworks[J]. CIESC Journal (化工学报), 2009, 60(4): 805-819 |
[10] | Liu D, Zhong C. Understanding gas separation in metal-organic frameworks using computer modeling[J]. J. Mater. Chem., 2010, 20(46): 10308-10318 |
[11] | Huang H, Zhang W, Liu D, Liu B, Chen G, Zhong C. Effect of temperature on gas adsorption and separation in ZIF-8: a combined experimental and molecular simulation study[J]. Chem. Eng. Sci., 2011, 66: 6297-6305 |
[12] | Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009, 38(5): 1450-1459 |
[13] | Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angew. Chem. Int. Ed., 2007, 46(40): 7548-7558 |
[14] | Jia J, Xu F J, Long Z, Hou X D, Sepaniak M J. Metal-organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg+[J]. Chem. Commun., 2013, 49(41): 4670-4672 |
[15] | Plant D F, Maurin G, Deroche I, Gaberova L, Llewellyn P L. CO2 adsorption in alkali cation exchanged Y faujasites: a quantum chemical study compared to experiments[J]. Chem. Phys. Lett., 2006, 426(4/5/6): 387-392 |
[16] | Ghoufi A, Gaberova L, Rouquerol J, Vincent D, Llewellyn P L, Maurin G. Adsorption of CO2, CH4 and their binary mixture in Faujasite NaY: a combination of molecular simulations with gravimetry-manometry and microcalorimetry measurements[J]. Microporous Mesoporous Mater., 2009, 119(1/2/3): 117-128 |
[17] | Dreisbach F, Staudt R, Keller J U. High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon[J]. Adsorption, 1999, 5(3): 215-227 |
[18] | Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev., 2012, 112(2): 724-781 |
[19] | Czaja A U, Trukhan N, Müeller U. Industrial applications of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5): 1284- 1293 |
[20] | Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastré J. Metal-organic frameworks-prospective industrial applications[J]. J. Mater. Chem., 2006, 16(7): 626-636 |
[21] | Couck S, Denayer J F M, Baron G V, Rémy T, Gascon J, Kapteijn F. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4 [J]. J. Am. Chem. Soc., 2009, 131(18): 6326-6327 |
[22] | Torrisi A, Bell R G, Mellot-Draznieks C. Functionalized MOFs for enhanced CO2 capture[J]. Cryst. Growth Des., 2010, 10(7): 2839- 2841 |
[23] | Yang Q, Vaesen S, Ragon F, Wiersum A D, Wu D, Lago A, Devic T, Martineau C, Taulelle F, Llewellyn P L, Jobic H, Zhong C, Serre C, De Weireld G, Maurin G. A water stable metal-organic frameworks with optimal features for CO2 capture[J]. Angew. Chem. Ind. Ed., 2013, 52(39): 10316-10320 |
[24] | Greathouse J A, Allendorf M D. The interaction of water with MOF-5 simulated by molecular dynamics[J]. J. Am. Chem. Soc., 2006, 128 (33): 10678-10679 |
[25] | Saha D, Deng S. Structural stability of metal organic framework MOF-177 [J]. J. Phys. Chem. Lett., 2010, 1(1): 73-78 |
[26] | Park K S, Ni Z, Cōté A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc. Natl. Acad. Sci., 2006, 103(27): 10186-10191 |
[27] | Kang I J, Khan N A, Haque E, Jhung S H. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions[J]. Chem. Eur. J., 2011, 17(23): 6437-6442 |
[28] | Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J. Am. Chem. Soc., 2008, 130(42): 13850-13851 |
[29] | Jakobsen S, Gianolio D, Wragg D S, Nilsen M H, Emerich H, Bordiga S, Lamberti C, Olsbye U, Tilset M, Lillerud K P. Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66 [J]. Phys. Rev. B, 2012, 86(12): 125429 |
[30] | Tanabe K K, Cohen S M. Postsynthetic modification of metal-organic frameworks—a progress report[J]. Chem. Soc. Re., 2011, 40:498-519 |
[31] | Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472 |
[32] | Yang C, Wang X, Omary M A. Fluorous metal-organic frameworks for high-density gas adsorption[J]. J. Am. Chem. Soc., 2007, 129(50): 15454-15455 |
[33] | Debatin F, Behrens K, Weber J, Baburin I A, Thomas A, Schmidt J, Senkovska I, Kaskel S, Kelling A, Hedin N, Bacsik Z, Leoni S, Seifert G, Jäger C, Günter C, Schilde U, Friedrich A, Holdt H J. An isoreticular family of microporous metal-organic frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate: syntheses, structures and properties[J]. Chem. Eur. J., 2012, 18(37): 11630- 11640 |
[34] | Zhao Y, Wu H, Emge T J, Gong Q, Nijem N, Chabal Y J, Kong L, Langreth D C, Liu H, Zeng H, Li J. Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures[J]. Chem. Eur. J., 2011, 17(18): 5101-5109 |
[35] | Colombo V, Montoro C, Maspero A, Palmisano G, Masciocchi N, Galli S, Barea E, Navarro J A R. Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification[J]. J. Am. Chem. Soc., 2012, 134(30): 12830- 12843 |
[36] | Mu W, Liu D, Yang Q, Zhong C. Computational study of the effect of organic linkers on natural gas upgrading in metal-organic frameworks [J]. Microporous Mesoporous Mater., 2010, 130(1/2/3): 76-82 |
[37] | Zhang W, Huang H, Zhong C, Liu D. Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks:a combined experimental and molecular simulation study[J]. Phys. Chem. Chem. Phys., 2012, 14(7): 2317-2325 |
[38] | Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G. Flexible porous metal-organic frameworks for a controlled drug delivery[J]. J. Am. Chem. Soc., 2008, 130(21): 6774-6780 |
[39] | Liu X M, Rather S U, Li Q, Lueking A, Zhao Y, Li J. Hydrogenation of CuBTC framework with the introduction of a PtC hydrogen spillover catalyst[J]. J. Phys. Chem. C, 2012, 116(5): 3477-3485 |
[40] | Zhang L, Hu Y H. A systematic investigation of decomposition of nano Zn4O(C8H4O4)3 metal-organic framework[J]. J. Phys. Chem. C, 2010, 114(6): 2566-2572 |
[41] | Demessence A, Horcajada P, Serre C, Boissiere C, Grosso D, Sanchez C, Férey G. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr) [J]. Chem. Commun., 2009, 46: 7149-7151 |
[42] | Haouas M, Volkringer C, Loiseau T, Férey G, Taulelle F. Monitoring the activation process of the giant pore MIL-100(Al) by solid state NMR[J]. J. Phys. Chem. C, 2011, 115(36): 17934-17944 |
[43] | Férey G, Serre C, Mellot-Draznieks C, Millange F, Surble S, Dutour J, Margiolaki I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction [J]. Angew. Chem. Int. Ed., 2004, 43(46): 6296 -6301 |
[44] | Horcajada P, Surblé S, Serre C, Hong D-Y, Seo Y-K, Chang J-S, Grenèche J-M, Margiolaki I, Férey G. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores[J]. Chem. Commun., 2007, 27: 2820-2822 |
[45] | Deng H, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084): 1018-1023 |
[46] | Yang J, Grzech A, Mulder F M, Dingemans T J. Methyl modified MOF-5: a water stable hydrogen storage material[J]. Chem. Commun., 2011, 47(18): 5244-5246 |
[47] | Kandiah M, Nilsen M H, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli E A, Bonino F, Lillerud K P. Synthesis and stability of tagged UiO-66 Zr-MOFs [J]. Chem. Mater., 2010, 22(24): 6632-6640 |
[48] | Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chem. Eur. J., 2004, 10(6): 1373-1382 |
[49] | Maes M, Vermoortele F, Alaerts L, Couck S, Kirschhock C E A, Denayer J F M, de Vos D E. Separation of styrene and ethylbenzene on metal-organic frameworks: analogous structures with different adsorption mechanisms[J]. J. Am. Chem. Soc., 2010, 132(43): 15277- 15285 |
[50] | Lebedev O I, Millange F, Serre C, Van Tendeloo G, Ferey G. First direct imaging of giant pores of the metal-organic framework MIL-101[J]. Chem. Mater., 2005, 17(26): 6525-6527 |
[51] | Wu L, Xue M, Qiu S-L, Chaplais G, Simon-Masseron A, Patarin J. Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy[J]. Microporous Mesoporous Mater., 2012, 157(SI): 75-81 |
[52] | Biswas S, Ahnfeldt T, Stock N. New functionalized flexible Al-MIL-53-X (X =—Cl, —Br, —CH3, —NO2, —(OH)2) solids: syntheses, characterization, sorption, and breathing behavior[J]. Inorg. Chem., 2011, 50(19): 9518-9526 |
[53] | Biswas S, Vanpoucke D E P, Verstraelen T, Vandichel M, Couck S, Leus K, Liu Y Y, Waroquier M, van Speybroeck V , Denayer J F M, van der Voort P. New functionalized metal-organic frameworks MIL-47-X (X =—Cl, —Br, —CH3, —CF3, —OH, —OCH3): synthesis, characterization, and CO2 adsorption properties[J]. J. Phys. Chem. C, 2013, 117(44): 22784-22796 |
[54] | Zhang Z, Li Z, Li J. Computational study of adsorption and separation of CO2, CH4, and N2 by an rht-type metal-organic framework[J]. Langmuir, 2012, 28(33): 12122-12133 |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[5] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[8] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[12] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[13] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[14] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[15] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||