化工学报 ›› 2016, Vol. 67 ›› Issue (1): 41-53.DOI: 10.11949/j.issn.0438-1157.20150611
张锁江, 张香平, 聂毅, 鲍迪, 董海峰, 吕兴梅
收稿日期:
2015-05-13
修回日期:
2015-07-21
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
张锁江
基金资助:
国家重点基础研究发展计划项目(2015CB251403);国家杰出青年基金项目(21425625)。
ZHANG Suojiang, ZHANG Xiangping, NIE Yi, BAO Di, DONG Haifeng, LÜ Xingmei
Received:
2015-05-13
Revised:
2015-07-21
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Basic Research Program of China(2015CB251403) and the National Science Fund for Distinguished Young Scholars (21425625).
摘要:
发展从源头消除污染的绿色技术是过程工业可持续发展的必然要求,任何单元技术的突破对过程工程的绿色化都是不可或缺的。然而过程工程是一个系统科学,不仅要考虑单个技术,重点还要考虑从原料替代、介质创新到单元强化及系统集成的整个链条,归根到底是要通过新介质(如催化剂、溶剂等)的原始创新和新工艺集成创新实现过程工业的绿色化。基于系统论的科学思想综合考虑过程工程这一复杂大系统,以离子液体介质创新为核心,综述了在原料替代、新型介质设计、传递规律、系统集成方面的新进展,以期为绿色化工技术的发展提供重要的科学基础。
中图分类号:
张锁江, 张香平, 聂毅, 鲍迪, 董海峰, 吕兴梅. 绿色过程系统工程[J]. 化工学报, 2016, 67(1): 41-53.
ZHANG Suojiang, ZHANG Xiangping, NIE Yi, BAO Di, DONG Haifeng, LÜ Xingmei. Green process system engineering[J]. CIESC Journal, 2016, 67(1): 41-53.
[1] | ANASTAS P, WARNER J. Green Chemistry: Theory and Practice[M]. Oxford, UK: Oxford University Press, 1998 |
[2] | ZHANG S, ZHANG X, LI C. Researches and trend on green process synthesis and design [J]. The Chinese Journal of Process Engineering, 2005, 5(5): 580-590. |
[3] | ZHANG Y. The green process engineering science [J]. The Chinese Journal of Process Engineering, 2001, 1(1): 10-15. |
[4] | 张懿. 清洁生产与循环经济[R]. 河南省第二届循环经济发展论坛会议. 河南, 2007. |
[5] | KENARSARI S D, YANG D L, JIANG G D, et al. Review of recent advances in carbon dioxide separation and capture [J]. RSC Adv., 2013, 3(45): 22739-22773. |
[6] | ZHANG X P, ZHANG X C, DONG H F, et al. Carbon capture with ionic liquids: overview and progress [J]. Energ. Environ. Sci., 2012, 5(5): 6668-6681. |
[7] | ZHANG S J, ZHANG X P, ZHAO Y S, et al. A novel ionic liquids-based scrubbing process for efficient CO2 capture [J]. Sci. China Chem., 2010, 53(7): 1549-1553. |
[8] | KARADAS F, ATILHAN M, APARICIO S. Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening [J]. Energy & Fuels, 2010, 24: 5817-5828. |
[9] | HASIB-UR-RAHMAN M, SIAJ M, LARACHI F. Ionic liquids for CO2 capture-development and progress [J]. Chemical Engineering and Processing, 2010, 49(4): 313-322. |
[10] | FREEMANTLE M. Green process uses ionic liquid and CO2 [J]. Chem. Eng. News., 1999, 77(19): 9-9. |
[11] | HU Y F, LIU Z C, XU C M, et al. The molecular characteristics dominating the solubility of gases in ionic liquids [J]. Chemical Society Reviews, 2011, 40(7): 3802-3823. |
[12] | XU B H, WANG J Q, SUN J, et al. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach [J]. Green Chemistry, 2015, 17(1): 108-122. |
[13] | ZHANG J M, SUN J, ZHANG X C, et al. The recent development of CO2 fixation and conversion by ionic liquid [J]. Green Gases, 2011, 1(2): 142-159. |
[14] | YANG Z Z, ZHAO Y N, HE L N. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion [J]. RSC Adv., 2011, 1(4): 545-567. |
[15] | HUBBARD C D, ILLNER P, VAN ELDIK R. Understanding chemical reaction mechanisms in ionic liquids: successes and challenges [J]. Chemical Society Reviews, 2011, 40(1): 272-290. |
[16] | OLIVIER-BOURBIGOU H, MAGNA L, MORVAN D. Ionic liquids and catalysis: recent progress from knowledge to applications [J]. Appl. Catal. A-Gen., 2010, 373(1/2): 1-56. |
[17] | VIDAL L, RIEKKOLA M L, CANALS A. Ionic liquid-modified materials for solid-phase extraction and separation: a review [J]. Anal. Chim. Acta, 2012, 715: 19-41. |
[18] | PEREIRO A B, ARAUJO J M M, ESPERANCA J, et al. Ionic liquids in separations of azeotropic systems—a review [J]. J. Chem. Thermodyn., 2012, 46: 2-28. |
[19] | ENDRES F. Ionic liquids for electrochemical deposition: prospects and challenges [J]. Chem. Ing. Tech., 2011, 83(9): 1485-1492. |
[20] | NOBLE R D, GIN D L. Perspective on ionic liquids and ionic liquid membranes [J]. Journal of Membrane Science, 2011, 369(1/2): 1-4. |
[21] | GIN D L, NOBLE R D. Designing the next generation of chemical separation membranes [J]. Science, 2011, 332(6030): 674-676. |
[22] | LIU C Z, WANG F, STILES A R, et al. Ionic liquids for biofuel production: opportunities and challenges [J]. Appl. Energy, 2012, 92: 406-414. |
[23] | ANDREANI L, ROCHA J D. Use of ionic liquids in biodiesel production: a review [J]. Braz. J. Chem. Eng., 2012, 29(1): 1-13. |
[24] | MORA-PALE M, MELI L, DOHERTY T V, et al. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass [J]. Biotechnol. Bioeng., 2011, 108(6): 1229-1245. |
[25] | PETKOVIC M, SEDDON K R, REBELO L P N, et al. Ionic liquids: a pathway to environmental acceptability [J]. Chemical Society Reviews, 2011, 40(3): 1383-1403. |
[26] | PHAM T P T, CHO C W, YUN Y S. Environmental fate and toxicity of ionic liquids: a review [J]. Water Research, 2010, 44(2): 352-372. |
[27] | ROTH C, PEPPEL T, FUMINO K, et al. The importance of hydrogen bonds for the structure of ionic liquids: single-crystal X-ray diffraction and transmission and attenuated total reflection spectroscopy in the terahertz region [J]. Angew. Chem. Int. Edit., 2010, 49(52): 10221-10224. |
[28] | PEPPEL T, ROTH C, FUMINO K, et al. The influence of hydrogen-bond defects on the properties of ionic liquids [J]. Angew. Chem. Int. Edit., 2011, 50(29): 6661-6665. |
[29] | DONG K, SONG Y, LIU X, et al. Understanding structures and hydrogen bonds of ionic liquids at the electronic level [J]. The Journal of Physical Chemistry B, 2011, 116(3): 1007-1017. |
[30] | DONG K, ZHANG S, WANG D, et al. Hydrogen bonds in imidazolium ionic liquids [J]. The Journal of Physical Chemistry A, 2006, 110(31): 9775-9782. |
[31] | MEOT-NER M. Update 1 of: strong ionic hydrogen bonds [J]. Chemical Reviews, 2012, 112(10): PR22-PR103. |
[32] | FUMINO K, WULF A, LUDWIG R. Strong, localized, and directional hydrogen bonds fluidize ionic liquids [J]. Angew. Chem. Int. Edit., 2008, 47(45): 8731-8734. |
[33] | WULF A, FUMINO K, LUDWIG R. Spectroscopic evidence for an enhanced anion-cation interaction from hydrogen bonding in pure imidazolium ionic liquids [J]. Angew. Chem. Int. Edit., 2010, 49(2): 449-453. |
[34] | REICHERT W M, HOLBREY J D, SWATLOSKI R P, et al. Solid-state analysis of low-melting 1,3-dialkylimidazolium hexafluorophosphate salts (ionic liquids) by combined X-ray crystallographic and computational analyses [J]. Cryst. Growth. Des., 2007, 7(6): 1106-1114. |
[35] | SOUTULLO M D, ODOM C I, WICKER B F, et al. Reversible CO2 capture by unexpected plastic-, resin-, and gel-like ionic soft materials discovered during the combi-click generation of a tsil library [J]. Chem. Mater., 2007, 19(15): 3581-3583. |
[36] | SLATTERY J M, DAGUENET C, DYSON P J, et al. How to predict the physical properties of ionic liquids: a volume-based approach [J]. Angew. Chem. Int. Edit., 2007, 46(28): 5384-5388. |
[37] | DONG K, ZHANG S, WANG Q. A new class of ion-ion interaction: Z-bond [J]. Sci. China. Chem., 2014, DOI: 10.1007/s11426-014-5147-2. |
[38] | JIANG J C, LIN K H, LI S C, et al. Association structures of ionic liquid/DMSO mixtures studied by high-pressure infrared spectroscopy [J]. Journal of Chemical Physics, 2011, 134(4): 044506. |
[39] | LOPEZ-PASTOR M, AYORA-CANADA M J, VALCARCEL M, et al. Association of methanol and water in ionic liquids elucidated by infrared spectroscopy using two-dimensional correlation and multivariate curve resolution [J]. Journal of Physical Chemistry B, 2006, 110(22): 10896-10902. |
[40] | HE H, CHEN H, ZHENG Y, et al. The hydrogen-bonding interactions between 1-ethyl-3-methylimidazolium lactate ionic liquid and methanol [J]. Aust. J. Chem., 2013, 66(1): 50-59. |
[41] | WANG Y, VOTH G A. Unique spatial heterogeneity in ionic liquids [J]. Journal of the American Chemical Society, 2005, 127(35): 12192-12193. |
[42] | WANG Y, JIANG W, YAN T, et al. Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations [J]. Accounts of Chemical Research, 2007, 40(11): 1193-1199. |
[43] | WANG Y, VOTH G A. Tail aggregation and domain diffusion in ionic liquids [J]. The Journal of Physical Chemistry B, 2006, 110(37): 18601-18608. |
[44] | LIU X, ZHOU G, ZHANG S, et al. Molecular simulation of imidazolium amino acid-based ionic liquids [J]. Molecular Simulation, 2010, 36(14): 1123-1130. |
[45] | CANONGIA LOPES J N A, P DUA A A H. Nanostructural organization in ionic liquids [J]. The Journal of Physical Chemistry B, 2006, 110(7): 3330-3335. |
[46] | CHEN S, ZHANG S, LIU X, et al. Ionic liquid clusters: structure, formation mechanism, and effect on the behavior of ionic liquids [J]. Phys. Chem. Chem. Phys., 2014, 16: 5893-5906. |
[47] | YU G, ZHAO D, WEN L, et al. Viscosity of ionic liquids: database, observation, and quantitative structure-property relationship analysis [J]. AIChE J., 2012, 58(9): 2885-2899. |
[48] | GAO Y, ARRITT S W, TWAMLEY B, et al. Guanidinium-based ionic liquids [J]. Inorganic Chemistry, 2005, 44: 1704-1712. |
[49] | CELATA G P, D'ANNIBALE F, DI MARCO P, et al. Measurements of rising velocity of a small bubble in a stagnant fluid in one-and two-component systems [J]. Exp. Therm. Fluid. Sci., 2007, 31(6): 609-623. |
[50] | ALVES S S, ORVALHO S P, VASCONCELOS J M T. Effect of bubble contamination on rise velocity and mass transfer [J]. Chem. Eng. Sci., 2005, 60(1): 1-9. |
[51] | PARKINSON L, SEDEV R, FORNASIERO D, et al. The terminal rise velocity of 10—100 mm diameter bubbles in water [J]. Journal of Colloid and Interface Science, 2008, 322(1): 168-172. |
[52] | RUZICKA M C, BUNGANIC R, DRAHOS J. Meniscus dynamics in bubble formation(Ⅰ): Experiment [J]. Chemical Engineering Research &Design, 2009, 87(10A): 1349-1356. |
[53] | MAXWORTHY T, GNANN C, K RTEN M, et al. Experiments on the rise of air bubbles in clean viscous liquids [J]. Journal of Fluid Mechanics, 1996, 321(1): 421-441. |
[54] | SNABRE P, MAGNIFOTCHAM F I. Formation and rise of a bubble stream in a viscous liquid [J]. European Physical Journal B, 1998, 4(3): 369-377. |
[55] | KAWAHARA A, SADATOMI M, NEI K, et al. Experimental study on bubble velocity, void fraction and pressure drop for gas-liquid two-phase flow in a circular microchannel [J]. International Journal of Heat and Fluid Flow, 2009, 30(5): 831-841. |
[56] | PANCHOLI K, STRIDE E, EDIRISINGHE M. Dynamics of bubble formation in highly viscous liquids [J]. Langmuir, 2008, 24(8): 4388-4393. |
[57] | DONG H F, WANG X L, LIU L, et al. The rise and deformation of a single bubble in ionic liquids [J]. Chemical Engineering Science, 2010, 65(10): 3240-3248. |
[58] | ZHANG X, DONG H, BAO D, et al. Effect of small amount of water on CO2 bubble behavior in ionic liquid systems [J]. Ind. Eng. Chem. Res., 2014, 53(1): 428-439. |
[59] | ZHANG X, DONG H F, HUANG Y, et al. Experimental study on gas holdup and bubble behavior in carbon capture systems with ionic liquid [J]. Chem. Eng. J., 2012, 209: 607-615. |
[60] | ZHANG X, BAO D, HUANG Y, et al. Gas-liquid mass-transfer properties in CO2 absorption system with ionic liquids [J]. AIChE J., 2014, 60(8): 2929-2939. |
[61] | WANG X L, DONG H F, ZHANG X P, et al. Numerical simulation of single bubble motion in ionic liquids [J]. Chemical Engineering Science, 2010, 65(22): 6036-6047. |
[62] | WANG X L, DONG H F, ZHANG X P, et al. Numerical simulation of absorbing CO2 with ionic liquids [J]. Chem. Eng. Technol., 2010, 33(10): 1615-1624. |
[63] | 徐琰, 董海峰, 田肖, 等. 鼓泡塔中离子液体-空气两相流的CFD-PBM耦合模拟[J]. 化工学报, 2001, 62(10): 2699-2706. |
XU Y, DONG H F, TIAN X, et al. CFD-PBM coupled simulation of ionic liquid-air two-phase flow in bubble column [J]. CIESC Journal, 2011, 62(10): 2699-2706. | |
[64] | SHIFLETT M B, DREW D W, CANTINI R A, et al. Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate [J]. Energy & Fuels, 2010, 24: 5781-5789. |
[65] | ZHANG S J, SUN N, HE X Z, et al. Physical properties of ionic liquids: database and evaluation [J]. J. Phys. Chem. Ref. Data, 2006, 35(4): 1475-1517. |
[66] | ZHANG S J, SUN N, ZHANG X P, et al. Periodicity and map for discovery of new ionic liquids [J]. Sci. China Ser. B, 2006, 49(2): 103-115. |
[67] | HUANG Y, DONG H, ZHANG X, et al. A new fragment contribution-corresponding states method for physicochemical properties prediction of ionic liquids [J]. AIChE J., 2013, 594(4): 1348-1359. |
[68] | TIAN X A, ZHANG X P, WEI L, et al. Multi-scale simulation of the 1,3-butadiene extraction separation process with an ionic liquid additive [J]. Green Chem., 2010, 12(7): 1263-1273. |
[69] | ZHAO Y S, ZHANG X P, ZHAO J H, et al. Research of QSPR/QSAR for ionic liquids [J]. Prog. Chem., 2012, 24(7): 1236-1244. |
[70] | ZHAO Y S, ZHAO J H, HUANG Y, et al. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method [J]. J. Hazard. Mater., 2014, 278: 320-329. |
[71] | DE MELO E B. A structure-activity relationship study of the toxicity of ionic liquids using an adapted Ferreira-Kiralj hydrophobicity parameter [J]. Phys. Chem. Chem. Phys., 2015, 17(6): 4516-4523. |
[72] | ZHANG X, SINGH B, HE X, et al. Post-combustion carbon capture technologies: energetic analysisand life cycle assessment [J]. Int. J. Greenh. Gas Con., 2014, 27: 289-298. |
[73] | ZHANG Y, BAKSHI B R, DEMESSIE E S. Life cycle assessment of an ionic liquid versus molecular solvents and their applications [J]. Environ. Sci. Technol., 2008, 42(5): 1724-1730. |
[74] | ZHAO X, XING H B, LI R L, et al. Gas separation based on ionic liquids [J]. Prog. Chem., 2011, 23(11): 2258-2268. |
[75] | GAO J, ZHONG S H. The research progress in preparation of ethylene carbonate directly from CO2 and ethylene oxide [J]. Prog. Chem., 2002, 14(2): 107-112. |
[76] | PENG J J, DENG Y Q. Cycloaddition between propylene oxide and carbon dioxide catalysed by ionic liquids [J]. New J. Chem., 2001, 25: 639-641. |
[77] | ZHANG S, CHEN Y, LI F, et al. Fixation and conversion of CO2 using ionic liquids [J]. Catalysis Today, 2006, 115(1/2/3/4): 61-69. |
[78] | SUN J, WANG L, ZHANG S J, et al. ZnCl2/phosphonium halide: an efficient lewis acid/base catalyst for the synthesis of cyclic carbonate [J]. Journal of Molecular Catalysis a-Chemical., 2006, 256(1/2): 295-300. |
[79] | SUN J, ZHANG S, CHENG W, et al. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate [J]. Tetrahedron Letters, 2008, 49(22): 3588-3591. |
[80] | SUN J, HAN L, CHENG W, et al. Efficient acid-base bifunctional catalysts for the fixation of CO2 with epoxides under metal-and solvent-free conditions [J]. Chemsuschem., 2011, 4(4): 502-507. |
[81] | WANG J Q, SUN J, CHENG W G, et al. Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates [J]. Phys. Chem. Chem. Phys., 2012, 14(31): 11021-11026. |
[82] | SUN J, REN J, ZHANG S, et al. Water as an efficient medium for the synthesis of cyclic carbonate [J]. Tetrahedron Letters, 2009, 50(4): 423-426. |
[83] | CHENG W G, CHEN X, SUN J, et al. Sba-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides [J]. Catalysis Today, 2013, 200: 117-124. |
[84] | TAKAHASHI T, WATAHIKI T, KITAZUME S, et al. Synergistic hybrid catalyst for cyclic carbonate synthesis: remarkable acceleration caused by immobilization of homogeneous catalyst on silica [J]. Chem. Commun., 2006, (15): 1664-1666. |
[85] | SUN J, CHENG W, FAN W, et al. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2 [J]. Catalysis Today, 2009, 148(3/4): 361-367. |
[86] | CHEN X, SUN J, WANG J, et al. Polystyrene-bound diethanolamine based ionic liquids for chemical fixation of CO2 [J]. Tetrahedron Letters, 2012, 53(22): 2684-2688. |
[87] | XIE Y, ZHANG Z, JIANG T, et al. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix [J]. Angew. Chem. Int. Edit., 2007, 46(38): 7255-7258. |
[88] | SHI T Y, WANG J Q, SUN J, et al. Efficient fixation of CO2 into cyclic carbonates catalyzed by hydroxyl-functionalized poly(ionic liquids) [J]. RSC Adv., 2013, 3(11): 3726-3732. |
[89] | HAN L, CHOI H-J, KIM D-K, et al. Porous polymer bead-supported ionic liquids for the synthesis of cyclic carbonate from CO2 and epoxide [J]. Journal of Molecular Catalysis A-Chemical, 2011, 338(1/2): 58-64. |
[90] | BLANCHARD L A, HANCU D, BECKMAN E J, et al. Green processing using ionic liquids and CO2 [J]. Nature, 1999, 399(6731): 28-29. |
[91] | ZHAO Y, ZHANG X, ZHEN Y, et al. Novel alcamines ionic liquids based solvents: preparation, characterization and applications in carbon dioxide capture [J]. Int. J. Greenh. Gas Con., 2011, 5(2): 367-373. |
[92] | WAPPEL D, GRONALD G, KALB R, et al. Ionic liquids for post-combustion CO2 absorption [J]. Int. J. Greenh. Gas Con., 2010, 4(3): 486-494. |
[93] | VEGA L F, VILASECA O, LLOVELL F, et al. Modeling ionic liquids and the solubility of gases in them: recent advances and perspectives [J]. Fluid Phase Equilib., 2010, 294(1/2): 15-30. |
[94] | KAZARIAN S G, BRISCOE B J, WELTON T. Combining ionic liquids and supercritical fluids: ATR-IR study of CO dissolved in two ionic liquids at high pressures [J]. Chem. Commun., 2000, (20): 2047-2048. |
[95] | CAMMARATA L, KAZARIAN S G, SALTER P A, et al. Molecular states of water in room temperature ionic liquids [J]. Phys. Chem. Chem. Phys., 2001, 3(23): 5192-5200. |
[96] | CROWHURST L, MAWDSLEY P R, PEREZ-ARLANDIS J M, et al. Solvent-solute interactions in ionic liquids [J]. Phys. Chem. Chem. Phys., 2003, 5(13): 2790-2794. |
[97] | YU G, ZHANG S. Insight into the cation-anion interaction in 1,1,3,3-tetramethylguanidinium lactate ionic liquid [J]. Fluid Phase Equilib., 2007, 255(1): 86-92. |
[98] | ZHANG J M, ZHANG S J, DONG K, et al. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids [J]. Chem. Eur. J., 2006, 12(15): 4021-4026. |
[99] | ZHANG Y, ZHANG S, LU X, et al. Dual amino-functionalised phosphonium ionic liquids for CO2 capture [J]. Chemistry -A European Journal, 2009, 15(12): 3003-3011. |
[100] | XUE Z M, ZHANG Z F, HAN J, et al. Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion [J]. Int. J. Greenh. Gas Con., 2011, 5(4): 628-633. |
[101] | LIU X, ZHOU G, ZHANG S, et al. Molecular dynamics simulation of dual amino-functionalized imidazolium-based ionic liquids [J]. Fluid Phase Equilib., 2009, 284(1): 44-49. |
[102] | WANG C, LUO H, JIANG D-E, et al. Carbon dioxide capture by superbase-derived protic ionic liquids [J]. Angew. Chem. Int. Edit., 2010, 49(34): 5978-5981. |
[103] | ZHANG J Z, JIA C, DONG H F, et al. A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture [J]. Ind. Eng. Chem. Res., 2013, 52(17): 5835-5841. |
[104] | GURKAN B, GOODRICH B F, MINDRUP E M, et al. Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture [J]. Journal of Physical Chemistry Letters, 2010, 1(24): 3494-3499. |
[105] | ZHAO Y S, ZHANG X P, DONG H F, et al. Solubilities of gases in novel alcamines ionic liquid 2-[2-hydroxyethyl (methyl) amino] ethanol chloride [J]. Fluid Phase Equilib., 2011, 302(1/2): 60-64. |
[106] | CAMPER D, BARA J E, GIN D L, et al. Room-temperature ionic liquid-amine solutions: Tunable solvents for efficient and reversible capture of CO2 [J]. Ind. Eng. Chem. Res., 2008, 47(21): 8496-8498. |
[107] | MERKEL T C, LIN H, WEI X, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes [J]. Journal of Membrane Science, 2010, 359(1/2): 126-139. |
[108] | BARA J E, CAMPER D E, GIN D L, et al. Room-temperature ionic liquids and composite materials: Platform technologies for CO2 capture [J]. Accounts of Chemical Research, 2010, 43(1): 152-159. |
[109] | LOZANO L J, GODINEZ C, DE LOS RIOS A P, et al. Recent advances in supported ionic liquid membrane technology [J]. Journal of Membrane Science, 2011, 376(1/2): 1-14. |
[110] | SCOVAZZO P. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (silms) for the purpose of guiding future research [J]. Journal of Membrane Science, 2009, 343(1/2): 199-211. |
[111] | SCOVAZZO P, KIEFT J, FINAN D A, et al. Gas separations using non-hexafluorophosphate PF6 anion supported ionic liquid membranes [J]. Journal of Membrane Science, 2004, 238(1/2): 57-63. |
[112] | LI P, PAUL D R, CHUNG T S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas [J]. Green Chem., 2012, 14(4): 1052-1063. |
[113] | GENTA M, IWAYA T, SASAKI M, et al. Depolymerization mechanism of poly(ethylene terephthalate) in supercritical methanol [J]. Ind. Eng. Chem. Res., 2005, 44(11): 3894-3900. |
[114] | YOSHIOKA T, SATO T, OKUWAKI A. Hydrolysis of waste pet by sulfuric-acid at 150-degrees-c for a chemical recycling [J]. J. Appl. Polym. Sci., 1994, 52(9): 1353-1355. |
[115] | SAMMON C, YARWOOD J, EVERALL N. An FT-IR study of the effect of hydrolytic degradation on the structure of thin pet films [J]. Polym. Degrad. Stabil., 2000, 67(1): 149-158. |
[116] | DE CARVALHO G M, MUNIZ E C, RUBIRA A F. Hydrolysis of post-consume poly(ethylene terephthalate) with sulfuric acid and product characterization by WAXD, 13C NMR and DSC [J]. Polym. Degrad. Stabil., 2006, 91(6): 1326-1332. |
[117] | HOSSEINI S S, TAHERI S, ZADHOUSH A, et al. Hydrolytic degradation of poly(ethylene terephthalate) [J]. J. Appl. Polym. Sci., 2007, 103(4): 2304-2309. |
[118] | YANG Y, LV Y, XU Y, et al. Chemical recycling of waste poly(ethylene terephthalate) [J]. Prog. Chem., 2001, 13(1): 65. |
[119] | ADAMS C J, EARLE M J, SEDDON K R. Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids [J]. Green Chem., 2000, 2(1): 21-23. |
[120] | KAMIMURA A, YAMAMOTO S. An efficient method to depolymerize polyamide plastics: a new use of ionic liquids [J]. Org. Lett., 2007, 9(13): 2533-2535. |
[121] | GU Y L, YANG H Z, DENG Y Q. Catalytic degradation of polycarbonate cd in ionic liquids: Recovery of diphenyl carbonate [J]. Acta Chimica Sinica., 2002, 60(4): 753-757. |
[122] | YUE Q F, WANG C X, ZHANG L N, et al. Glycolysis of poly(ethylene terephthalate) (PET) using basic ionic liquids as catalysts [J]. Polym. Degrad. Stabil., 2011, 96(4): 399-403. |
[123] | WANG H, LI Z X, LIU Y Q, et al. Degradation of poly(ethylene terephthalate) using ionic liquids [J]. Green Chem., 2009, 11(10): 1568-1575. |
[124] | WANG H, YAN R Y, LI Z X, et al. Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate) [J]. Catal. Commun., 2010, 11(8): 763-767. |
[125] | ZHOU X Y, LU X M, WANG Q, et al. Effective catalysis of poly(ethylene terephthalate) (PET) degradation by metallic acetate ionic liquids [J]. Pure. Appl. Chem., 2012, 84(3): 789-801. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[8] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[9] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[10] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[11] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[12] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[13] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[14] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[15] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||