[1] |
唐彪. 表面纳米多孔结构制备及其强化沸腾传热性能研究[D]. 广州:华南理工大学,2013.TANG B. Experimental investigation on fabrication and boilng heat transfer characteristics of nanostructured macroporous surface [D]. Guangzhou: South China University of Technology, 2013.
|
[2] |
OKTAY S. Method for forming heat sinks on semiconductor device chips: US3706127 [P]. 1972.
|
[3] |
HWANG U P, MORAN K P. Boiling heat transfer of silicon integrated circuits chip mounted on a substrate [J]. American Society of Mechanical Engineers, 1981, 20: 53-59.
|
[4] |
ANDERSON T M, MUDAWAR I. Microelectronic cooling by enhanced pool boiling of a dielecric fluorocarbon liquid [J]. Journal of Heat Transfer, 1989, 111: 752-759.
|
[5] |
NISHIKAWA K, FUJITA Y, UCHIDA S, et al. Effect of surface configuration on nucleate boiling heat transfer [J]. International Journal of Heat and Mass Transfer, 1984, 27: 1559-1571.
|
[6] |
YOU S M, SIMON T W, BAR-COHEN A. A technique for enhancing boiling heat transfer with application to cooling of electronic equipment [J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15: 823-831.
|
[7] |
HONDA H, TAKAMASTU H, WEI J J. Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness [J]. Journal of Heat Transfer, 2002, 124: 383-390.
|
[8] |
O'CONNOR J P, YOU S M, PRICE D C. A dielectric surface coating technique to enhance boiling heat transfer from high power microelectronics [J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, 1995, 18: 656-663.
|
[9] |
PARKER J L, EL-GENK M S. Enhanced saturation and subcooled boiling of FC-72 dielectric liquid [J]. International Journal of Heat and Mass Transfer, 2005, 48: 3736-3752.
|
[10] |
YU C K, LU D C, CHENG T C. Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72 [J]. Journal of Micromechanics and Microengineering, 2006, 16(10): 2092-2099.
|
[11] |
UJEREH S, FISHER T, MUDAWAR I. Effects of carbon nanotube arrays on nucleate pool boiling [J]. International Journal of Heat and Mass Transfer, 2007, 50: 4023-4038.
|
[12] |
MCHALE J P, GARIMELLA S V. Nucleate boiling from smooth and rough surfaces (Ⅰ): Fabrication and characterization of an optically transparent heater-sensor substrate with controlled surface roughness [J]. Experimental Thermal and Fluid Science, 2013, 44: 456-467.
|
[13] |
BYON C, CHOI S, KIM S J. Critical heat flux of bi-porous sintered copper coatings in FC-72 [J]. International Journal of Heat and Mass Transfer, 2013, 65: 655-661.
|
[14] |
WEI J J, HONDA H. Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72 [J]. International Journal of Heat and Mass Transfer, 2003, 46: 4059-4070.
|
[15] |
HONDA H, TAKAMASTU H, WEI J J. Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness [J]. Journal of Heat Transfer 2002, 124: 383-390.
|
[16] |
HONDA H, WEI J J. Enhanced boiling heat transfer from electronic components by use of surface microstructures [J]. Experimental Thermal and Fluid Science, 2004, 28: 159-169.
|
[17] |
WEI J J, GUO L J, HONDA H. Experimental study of boiling phenomena and heat transfer performances [J]. Heat and Mass Transfer, 2005, 41(8): 744-755.
|
[18] |
WEI J J, ZHAO J F, YUAN M Z, et al. Boiling heat transfer enhancement by using micro-pin-finned surface for electronics cooling [J]. Microgravity Science and Technology, 2009, 21(S1): S159-S173.
|
[19] |
RAINEY K N, YOU S M, LEE S. Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous, square pin-finned surfaces in FC-72 [J]. International Journal of Heat and Mass Transfer, 2003, 46: 23-35.
|
[20] |
XUE Y F, ZHAO J F,WEI J J, et al. Experimental study of nucleate pool boiling of FC-72 on smooth surface under microgravity [J]. Microgravity Science and Technology, 2011, 23(S1): S75-S85.
|
[21] |
XUE Y F, ZHAO J F, WEI J J, et al. Experimental study of nucleate pool boiling of FC-72 on micro-pin-finned surface under microgravity [J]. International Journal of Heat and Mass Transfer, 2013, 63: 425-433.
|
[22] |
WEI J J, XUE Y F, ZHAO J F, et al. Bubble behavior and heat transfer of nucleate pool boiling on micro-pin-finned surface in microgravity [J]. Chinese Physics Letters, 2011, 28: 016401. DOI: 10.1088/0256-307X/28/1/016401.
|
[23] |
ZHANG Y H, WEI J J, XUE Y F, et al. Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity [J]. Applied Thermal Engineering, 2014, 70: 172-182.
|
[24] |
ZHAO J F, LI J, YAN N, et al. Bubble behavior and heat transfer in quasi-steady pool boiling in microgravity [J]. Microgravity Science and Technology, 2009, 21(S1): S175-S183.
|
[25] |
RAJ R, KIM J, MCQUILLEN J. Pool boiling heat transfer on the international space station: experimental results and model verification [J]. Journal of Heat Transfer, 2012, 134: 101504-1-14.
|
[26] |
DI MARCO P, GRASSI W. Effect of force fields on pool boiling flow patterns in normal and reduced gravity [J]. Heat and Mass Transfer, 2009, 45: 959-966.
|
[27] |
FRITZ W, ENDE W. Berechnung des maximalvolumens von dampfslasen [J]. Physik Zeitschr, 1935, 36: 379-384.
|
[28] |
COLE R. Bubble frequencies and departure volumes at subatmospheric pressures [J]. AIChE J., 1967, 13: 779-783.
|
[29] |
COLE R, SHULMAN H L. Bubble growth rates at high Jakob numbers [J]. International Journal of Heat and Mass Transfer, 1966, 9: 1377-1399.
|
[30] |
COLE R, ROHSENOW W M. Correlation of bubble departure diameters for boiling of saturated liquids [J]. Chemical Engineers Progress Symposium Series, 1966, 65: 211-213.
|
[31] |
GORENFLO D, KNABE V, BEILING V. Bubble density on surfaces with nucleate boiling-its influence on heat transfer [C]//8th International Heat Transfer Conference. San Fransisco, 1986: 1995-2000.
|
[32] |
ZENG L Z, KLAUSNER J F, MEI R. A unified model for the prediction of bubble detachment diameters in boiling systems (Ⅰ): Pool boiling [J]. International Journal of Heat and Mass Transfer, 1993, 36(9): 2261-2270.
|
[33] |
YANG C X, WU Y T, YUAN X G, et al. Study on bubble dynamics for pool nucleate boiling [J]. International Journal of Heat and Mass Transfer, 2000, 43(2): 203-208
|
[34] |
KARRI S. Dynamics of bubble departure in micro-gravity [J]. Chemical Engineering Communications, 1988, 70: 127-135.
|
[35] |
MA A X, WEI J J, YUAN M Z, et al. Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces [J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 2925-2931.
|
[36] |
YUAN M Z, WEI J J, XUE Y F, et al. Subcooled flow boiling heat transfer of FC-72 from silicon chips fabricated with micro-pin-fins [J]. International Journal of Thermal Sciences, 2009, 48(7):1416-1422.
|
[37] |
LI C Y, GARIMELLA S V. Prandtl-number effects and generalized correlations for confined and submerged jet impingement [J]. International Journal of Heat and Mass Transfer, 2001, 44(18): 3471-3480.
|
[38] |
ROBINSON A J, SCHNITZLER E. An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer [J]. Experimental Thermal and Fluid Science, 2007, 32: 1-13.
|
[39] |
TIE P, LI Q, XUAN Y M. Investigation on the submerged liquid jet arrays impingement cooling [J]. Applied Thermal Engineering, 2011, 31(14/15): 2757-2763.
|
[40] |
张永海,魏进家,孔新. 交错排列柱状微结构射流冲击强化换热实验研究[J]. 工程热物理学报,2015, 36(7): 1476-1480.ZHANG Y H, WEI J J, KONG X. Enhanced boiling heat transfer of FC-72 over staggered micro-pin-finned surfaces with submerged jet impingement [J]. Journal of Engineering Thermophysics, 2015, 36(7): 1476-1480.
|
[41] |
张永海,魏进家,孔新. 柱状微结构浸没喷射沸腾强化换热实验研究[J]. 工程热物理学报,2015, 36(1): 93-96.ZHANG Y H, WEI J J, KONG X. Enhanced boiling heat transfer of FC-72 over micro-pin-finned surfaces with submerged jet impingement [J]. Journal of Engineering Thermophysics, 2015, 36(1): 93-96.
|
[42] |
ZHANG Y H, WEI J J, KONG X, et al. Confined submerged jet impingement boiling of subcooled FC-72 over micro-pin-finned surfaces [J]. Heat Transfer Engineering, 2015, 37(3/4): 269-278. DOI: 10.1080/01457632.2015.1052661.
|
[43] |
ZHANG Y H, WEI J J. Enhanced boiling heat transfer with submerged jet impingement over staggered micro-pin-finned surfaces [C]//3nd International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control. Taipei, 2015.
|
[44] |
GUO D, WEI J J, ZHANG Y H. Enhanced flow boiling heat transfer with jet impingement on micro-pin-finned surfaces [J]. Applied Thermal Engineering, 2011, 31: 2042-2051.
|
[45] |
ZHANG Y H, WEI J J, GUO D. Enhancement of flow-jet combined boiling heat transfer of FC-72 over micro-pin-finned surfaces [J]. Journal of Enhanced Heat Transfer, 2012, 19(6): 489-503.
|
[46] |
ANDREW A O T, HONG X, CHENG Y. Cooling of electronics components with free jet impingement boiling [C]//Intel Society Conference on Thermal Phenomena. 2002: 6387-6394
|
[47] |
RAINEY K N, LI G, YOU S M. Flow boiling heat transfer from plain and microporous coated surfaces in subcooled FC-72 [J]. Journal of Heat Transfer-Transactions of the ASME, 2001, 123(5): 918-925.
|