化工学报 ›› 2018, Vol. 69 ›› Issue (1): 57-68.DOI: 10.11949/j.issn.0438-1157.20171012
陈斌, 周致富, 辛慧
收稿日期:
2017-07-31
修回日期:
2017-10-10
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
陈斌
基金资助:
国家自然科学基金重点项目(51336006)。
CHEN Bin, ZHOU Zhifu, XIN Hui
Received:
2017-07-31
Revised:
2017-10-10
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171012
Supported by:
supported by the National Natural Science Foundation of China (51336006).
摘要:
随着皮肤激光医学的高速发展,与之配合的表皮冷却技术日益重要,具有极大的市场应用前景。制冷剂瞬态闪蒸喷雾冷却(CSC)已经成为激光治疗血管性皮肤病的重要辅助冷却手段,可以有效减小黑色素吸收激光能量导致的表皮热损伤,从而提高入射激光能量、改善治疗效果。CSC涉及到低沸点高挥发性介质的闪蒸雾化、冷却表面沸腾相变传热等多相流与传热复杂科学问题,已有研究大部分是以实验的方式进行。本文从闪蒸喷雾机理、闪蒸喷雾特性、表面动态传热规律与传热强化4个方面对CSC在近二十年的研究进展进行综述,对比分析了典型研究方法与研究结果,并对其影响因素进行了探讨,使用更低沸点的新制冷剂与背压/距离耦合的喷雾新技术可以极大提高冷却能力。最后,指出了当前研究的难点以及后续研究方向。
中图分类号:
陈斌, 周致富, 辛慧. 制冷剂瞬态闪蒸喷雾冷却研究进展[J]. 化工学报, 2018, 69(1): 57-68.
CHEN Bin, ZHOU Zhifu, XIN Hui. Cryogen transient flashing spray cooling: state of art[J]. CIESC Journal, 2018, 69(1): 57-68.
[1] | POLANCO G, HOLDO A E, MUNDAY G. General review of flashing jet studies[J]. J. Hazard Mater., 2010, 173(1/2/3):2-18. |
[2] | SHER E, BAR-KOHANY T, RASHKOVAN A. Flash-boiling atomization[J]. Progress in Energy and Combustion Science, 2008, 34(4):417-439. |
[3] | CHENG W L, ZHANG W W, CHEN H, et al. Spray cooling and flash evaporation cooling:the current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55:614-628. |
[4] | HSIEH S S, FAN T C, TSAI H H. Spray cooling characteristics of water and R-134a(Ⅰ):Nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2004, 47(26):5703-5712. |
[5] | HSIEH S S, FAN T C, TSAI H H. Spray cooling characteristics of water and R-134a(Ⅱ):Transient cooling[J]. International Journal of Heat and Mass Transfer, 2004, 47(26):5713-5724. |
[6] | HOU Y, LIU J, SU X, et al. Experimental study on the characteristics of a closed loop R134-a spray cooling[J]. Experimental Thermal and Fluid Science, 2015, 61:194-200. |
[7] | WANG C, XU R, SONG Y, et al. Study on water droplet flash evaporation in vacuum spray cooling[J]. International Journal of Heat and Mass Transfer, 2017, 112:279-288. |
[8] | SHEN S, CHE Z, WANG T, et al. Numerical study on flash boiling spray of multi-hole injector[J]. SAE International Journal of Fuels and Lubricants, 2017, 10(2):369-379. |
[9] | GUO H, MA X, LI Y, et al. Effect of flash boiling on microscopic and macroscopic spray characteristics in optical GDI engine[J]. Fuel, 2017, 190:79-89. |
[10] | GUO H, DING H, LI Y, et al. Comparison of spray collapses at elevated ambient pressure and flash boiling conditions using multi-hole gasoline direct injector[J]. Fuel, 2017, 199:125-134. |
[11] | MUTAIR S, IKEGAMI Y. Experimental investigation on the characteristics of flash evaporation from superheated water jets for desalination[J]. Desalination, 2010, 251(1/2/3):103-111. |
[12] | MUTAIR S, IKEGAMI Y. Experimental study on flash evaporation from superheated water jets:influencing factors and formulation of correlation[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24):5643-5651. |
[13] | ZHOU Z F, LI W Y, CHEN B, et al. A 3rd-order polynomial temperature profile model for the heating and evaporation of moving droplets[J]. Applied Thermal Engineering, 2017, 110:162-170. |
[14] | ZHOU Z F, WANG G X, CHEN B, et al. Evaluation of evaporation models for single moving droplet with a high evaporation rate[J]. Powder Technology, 2013, 240:95-102. |
[15] | ANDERSON R R, PARRISH J A. Selective photothermolysis:precise microsurgery by selective absorption of pulsed radiation[J]. Science, 1983, 220(4596):524-527. |
[16] | LI D, HE Y L, WANG G X. Thermal Modelling for Laser Treatment of Port Wine Stains[M]//Developments in Heat Transfer. In Tech, 2011:537-556. |
[17] | 周致富, 辛慧, 陈斌, 等. 激光手术喷雾冷却中单个液滴蒸发特性研究[J]. 中国激光, 2008, 35(6):952-956. ZHOU Z F, XIN H, CHEN B, el al. Evaporation characteristics of a single droplet in laser treatment of port wine stain in conjunction with cryogen spray cooling[J]. Chinese Journal of Lasers, 2008, 35(6):952-956. |
[18] | NELSON J S, MILNER T E, ANVARI B, et al. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation[J]. Arch. Dermatol., 1995, 131(6):695-700. |
[19] | NELSON J S, MILNER T E, ANVARI B, et al. Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels[J]. Lasers Surg. Med., 1996, 19(2):224-229. |
[20] | ZHOU Z F, CHEN B, WANG Y, et al. An experimental study on pulsed spray cooling with refrigerant R-404a in laser surgery[J]. Applied Thermal Engineering, 2012, 39(1):29-36. |
[21] | LI D, CHEN B, WU W J, et al. Numerical analysis of cold injury of skin in cryogen spray cooling for dermatologic laser surgery[C]//ASME International Mechanical Engineering Congress and Exposition Proceedings. Seattle, 2014:673-681. |
[22] | LIANG G, MUDAWAR I. Review of spray cooling(Ⅰ):Single-phase and nucleate boiling regimes, and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, 115:1174-1205. |
[23] | KIM J. Spray cooling heat transfer:the state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28(4):753-767. |
[24] | BROWN R, YORK J L. Sprays formed by flashing liquid jets[J]. AIChE Journal, 1962, 8(2):149-153. |
[25] | REITZ R D. A photographic study of flash-boiling atomization[J]. Aerosol Science and Technology, 1990, 12(3):561-569. |
[26] | OZA R D. On the mechanism of flashing injection of initially subcooled fuels[J]. Journal of Fluids Engineering-Transactions of the ASME, 1984, 106(1):105-109. |
[27] | PETER E M, TAKIMOTO A, HAYASHI Y. Flashing and shattering phenomena of superheated liquid jets[J]. JSME International Journal, Series B:Fluids and Thermal Engineering, 1994, 37(2):313-321. |
[28] | PARK B S, LEE S Y. An experimental investigation of the flash atomization mechanism[J]. Atomization and Sprays, 1994, 4(2):159-179. |
[29] | 王新升, 陈斌. R134a闪蒸喷雾过程中喷管内流动形态对喷雾特性的影响[J]. 化工学报, 2016, 67(12):4929-4935. WANG X S, CHEN B. Effect of flow pattern inside nozzle on spray characteristics of R134a flashing spray[J], CIESC Journal, 2016, 67(12):4929-4935. |
[30] | WANG X S, CHEN B, WANG R, et al. Experimental study on the relation between internal flow and flashing spray characteristics of R134a using straight tube nozzles[J]. International Journal of Heat and Mass Transfer, 2017, 115:524-536. |
[31] | 周致富, 白飞龙, 王锐, 等. 带膨胀腔喷嘴制冷剂R134a闪蒸喷雾可视化研究[J]. 工程热物理学报, 2015, 36(12):2646-2650. ZHOU Z F, BAI F L, WANG R, Visualization of the flashing spray generating by the expandion-chanmber nozzle using R134a[J]. Journal of Engineering Thermophysisc, 2015, 36(12):2646-2650. |
[32] | 周致富, 陈斌, 白飞龙, 等. 新型喷嘴R404a闪蒸瞬态喷雾冷却传热特性[J]. 化工学报, 2015, 66(S1):100-105. ZHOU Z F, CHEN B, BAI F L, el al. Heat transfer dynamics of R404a flashing pulsed spray cooling using expansion-chamber nozzle[J]. CIESC Journal, 2015, 66(S1):100-105. |
[33] | PIKKULA B M, TORRES J H, TUNNELL J W, et al. Cryogen spray cooling:effects of droplet size and spray density on heat removal[J]. Lasers Surg. Med., 2001, 28(2):103-112. |
[34] | PIKKULA B M, TUNNELL J W, CHANG D W, et al. Effects of droplet velocity, diameter, and film height on heat removal during cryogen spray cooling[J]. Ann. Biomed. Eng., 2004, 32(8):1131-1140. |
[35] | KARAPETIAN E, AGUILAR G, KIMEL S, et al. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling[J]. Phys. Med. Biol., 2003, 48(1):N1-6. |
[36] | AGUILAR G, MAJARON B, POPE K, et al. Influence of nozzle-to-skin distance in cryogen spray cooling for dermatologic laser surgery[J]. Lasers Surg. Med., 2001, 28(2):113-120. |
[37] | AGUILAR G, MAJARON B, VERKRUYSSE W, et al. Theoretical and experimental analysis of droplet diameter, temperature, and evaporation rate evolution in cryogenic sprays[J]. International Journal of Heat and Mass Transfer, 2001, 44(17):3201-3211. |
[38] | AGUILAR G, MAJARON B, KARAPETIAN E, et al. Experimental study of cryogen spray properties for application in dermatologic laser surgery[J]. IEEE Trans. Biomed. Eng., 2003, 50(7):863-869. |
[39] | VU H, GARC A-VALLADARES O, AGUILAR G. Vapor/liquid phase interaction in flare flashing sprays used in dermatologic cooling[J]. International Journal of Heat and Mass Transfer, 2008, 51(23/24):5721-5731. |
[40] | ZHOU Z F, WU W T, CHEN B, et al. An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16):4460-4468. |
[41] | YILDIZ D, RAMBAUD P, BEECK J V, et al. Evolution of the spray characteristics in superheated liquid jet atomization in function of initial flow conditions[C]//10th International Conference on Liquid Atomization and Spray Systems. Kyoto, 2006. |
[42] | YILDIZ D, VAN BEECK J P A J, RIETHMULLER M L. Feasibility exploration of laser-based techniques for characterization of a flashing jet[J]. Particle and Particle Systems Characterization, 2004, 21(5):390-402. |
[43] | YILDIZ D, RAMBAUD P, BEECK J V. Break-up, droplet size and velocity characterizations of a two-phase flashing R134a jet[C]//5th International Conference on Multiphase Flow. Yokohama, 2004. |
[44] | YILDIZ D, RAMBAUD P, VAN BEECK J, et al. Thermal characterization of a R134A two-phase flashing jet[C]//9th International Conference on Liquid Atomization and Spray Systems ICLASS. Sorreno, Italy, 2003. |
[45] | ZHOU Z F, WU W T, WANG G X, et al. Thermal characteristics of flashing spray of volatile R134a cryogens[C]//ASME 2011 International Mechanical Engineering Congress and Exposition. Denver, 2011:649-656. |
[46] | AGUILAR G, WANG G X, NELSON J S. Effect of spurt duration on the heat transfer dynamics during cryogen spray cooling[J]. Phys. Med. Biol., 2003, 48(14):2169-2181. |
[47] | TORRES J H, TUNNELL J W, PIKKULA B M, et al. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application[J]. Lasers Surg. Med., 2001, 28(5):477-486. |
[48] | TUNNELL J W, CHANG D W, JOHNSTON C, et al. Effects of cryogen spray cooling and high rdiant exposures on selective vascular injury during laser irradiation of human skin[J]. Arch. Dermatol., 2003, 139(1):743-750. |
[49] | TUNNELL J W, TORRES J H, ANVARI B. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling[J]. Ann. Biomed. Eng., 2002, 30(1):19-33. |
[50] | MAJARON B, AGUILARA G, BASINGERA B, et al. Sequential cryogen spraying for heat flux control at the skin surface[C]//Proc. SPIE. San Jose, 2001, 4244(4):74-81. |
[51] | MAJARON B, SVAASAND L O, AGUILAR G, et al. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment[J]. Phys. Med. Biol., 2002, 47(18):3275-3288. |
[52] | AGUILAR G, WANG G X, NELSON J S. Dynamic behavior of cryogen spray cooling:effects of spurt duration and spray distance[J]. Lasers Surg. Med., 2003, 32(2):152-159. |
[53] | TORRES J H, NELSON J S, TANENBAUM B S, et al. Estimation of internal skin temperatures in response to cryogen spray cooling:implications for laser therapy of port wine stains[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4):1058-1065. |
[54] | TUNNELL J W, CHANG D W, JOHNSTON C, et al. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin[J]. Arch. Dermatol., 2003, 139(6):743-750. |
[55] | TUNNELL J W, NELSON J S, TORRES J H, et al. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation:an ex vivo study[J]. Lasers in Surgery and Medicine, 2000, 27(10):373-383. |
[56] | PIKKULA B M, TUNNELL J W, ANVARI B. Methodology for characterizing heat removal mechanism in human skin during cryogen spray cooling[J]. Ann. Biomed. Eng., 2003, 31(5):493-504. |
[57] | AGUILAR G, VERKRUYSSE W, MAJARON B, et al. Measurement of heat flux and heat transfer coefficient during continuous cryogen spray cooling for laser dermatologic surgery[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(6):1013-1021. |
[58] | 周致富, 吴威涛, 王国祥, 等. 制冷剂闪蒸瞬态喷雾冷却表面温度的快速测量[J]. 化工学报, 2011, 62(11):2691-2695. ZHOU Z F, WU W T, WANG G X, et al. Thin-film thermocouples for rapid measurement of transient surface temperature in cryogen spray cooling[J]. CIESC Journal, 2011, 62(11):2691-2695. |
[59] | ZHOU Z F, XU T Y, CHEN B. Algorithms for the estimation of transient surface heat flux during ultra-fast surface cooling[J]. International Journal of Heat and Mass Transfer, 2016, 100:1-10. |
[60] | TIAN J M, CHEN B, ZHOU Z F. Methodology of surface heat flux estimation for 2D multi-layer mediums[J]. International Journal of Heat and Mass Transfer, 2017, 114:675-687. |
[61] | AGUILAR G, VU H, NELSON J S. Influence of angle between the nozzle and skin surface on the heat flux and overall heat extraction during cryogen spray cooling[J]. Phys. Med. Biol., 2004, 49(10):N147-N153. |
[62] | WANG G X, AGUILAR G, NELSON J S. Dynamic behavior of cryogen spray cooling:effect of spray distance[C]//ASME National Heat Transfer Conference. Las Vegas, 2003. |
[63] | JIA W, AGUILAR G, WANG G X, et al. Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures[J]. Phys. Med. Biol., 2004, 49(23):5295-5308. |
[64] | JIA W, AGUILAR G, VERKRUYSSE W, et al. Improvement of port wine stain laser therapy by skin preheating prior to cryogen spray cooling:a numerical simulation[J]. Lasers Surg. Med., 2006, 38(2):155-162. |
[65] | FRANCO W, LIU J, WANG G X, et al. Radial and temporal variations in surface heat transfer during cryogen spray cooling[J]. Phys. Med. Biol., 2005, 50(2):387-397. |
[66] | FRANCO W, WANG G X, NELSON J S, et al. Radial heat transfer dynamics during cryogen spray cooling[C]//ASME International Mechanical Engineering Congress and Exposition. Anaheim, 2004. |
[67] | FRANCO W, LIU J, ROMERO-MENDEZ R, et al. Extent of lateral epidermal protection afforded by a cryogen spray against laser irradiation[J]. Lasers Surg. Med., 2007, 39(5):414-421. |
[68] | WANG R, ZHOU Z F, CHEN B, et al. Surface heat transfer characteristics of R404A pulsed spray cooling with an expansion-chambered nozzle for laser dermatology[J]. International Journal of Refrigeration, 2015, 60:206-216. |
[69] | RAMIREZ-SAN-JUAN J C, CHOI B, FRANCO W, et al. Effect of ambient humidity on light transmittance through skin phantoms during cryogen spray cooling[J]. Physics in Medicine and Biology, 2006, 51(1):113-120. |
[70] | MAJARON B, KIMEL S, VERKRUYSSE W, et al. Cryogen spray cooling in laser dermatology:effects of ambient humidity and frost formation[J]. Lasers Surg. Med., 2001, 28(5):469-476. |
[71] | VU H, AGUILAR G, STUART NELSON J. Passive mass deposition control of cryogen sprays through the use of wire meshes[J]. Lasers Surg. Med., 2004, 34(4):329-334. |
[72] | BASINGER B, AGUILAR G, NELSON J S. Effect of skin indentation on heat transfer during cryogen spray cooling[J]. Lasers Surg. Med., 2004, 34(2):155-163. |
[73] | TUQAN A T, KELLY K M, AGUILAR G, et al. Evaluation of single versus multiple cryogen spray cooling spurts on in vitro model human skin[J]. Lasers Med. Sci., 2005, 20(2):80-86. |
[74] | KAO B, KELLY K M, AGUILAR G, et al. Evaluation of cryogen spray cooling exposure on in vitro model human skin[J]. Lasers Surg. Med., 2004, 34(2):146-154. |
[75] | TIAN J M, CHEN B, LI D, et al. Transient spray cooling:similarity of dynamic heat flux for different cryogens, nozzles and substrates[J]. International Journal of Heat & Mass Transfer, 2017, 108:561-571. |
[76] | CHEN J K, GHASRI P, AGUILAR G, et al. An overview of clinical and experimental treatment modalities for port wine stains[J]. J. Am. Acad. Dermatol., 2012, 67(2):289-304. |
[77] | AGUILAR G, CHOI B, BROEKGAARDEN M, et al. An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains[J]. Ann. Biomed. Eng., 2012, 40(2):486-506. |
[78] | DAI T, PIKKULA B M, TUNNELL J W, et al. Thermal response of human skin epidermis to 595-nm laser irradiation at high incident dosages and long pulse durations in conjunction with cryogen spray cooling:an ex-vivo study[J]. Lasers Surg. Med., 2003, 33(1):16-24. |
[79] | DAI T, YASEEN M A, DIAGARADJANE P, et al. Comparative study of cryogen spray cooling with R-134a and R-404a:implications for laser treatment of dark human skin[J]. J. Biomed. Opt., 2006, 11(4):041116. |
[80] | ZHOU Z F, CHEN B, WANG R, et al. Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens[J]. Experimental Thermal and Fluid Science, 2017, 82:189-197. |
[81] | LI D, CHEN B, WU W J, et al. Multi-scale modeling of tissue freezing during cryogen spray cooling with R134a, R407c and R404a[J]. Applied Thermal Engineering, 2014, 73(2):1489-1500. |
[82] | AGUILAR G, SVAASAND L O, NELSON J S. Effects of hypobaric pressure on human skin(Ⅰ):Feasibility study for port wine stain laser therapy[J]. Lasers Surg. Med., 2005, 36(2):124-129. |
[83] | AGUILAR G, FRANCO W, LIU J, et al. Effects of hypobaric pressure on human skin(Ⅱ):Implications for cryogen spray cooling[J]. Lasers Surg. Med., 2005, 36(2):130-135. |
[84] | FRANCO W, CHILDERS M, STUART NELSON J, et al. Laser surgery of port wine stains using local vaccum pressure(Ⅱ):Changes in calculated energy deposition[J]. Lasers Surg. Med., 2007, 39(2):118-127. |
[85] | ZHOU Z F, CHEN B, WANG R, et al. Coupling effect of hypobaric pressure and spray distance on heat transfer dynamics of R134a pulsed flashing spray cooling[J]. Experimental Thermal and Fluid Science, 2016, 70:96-104. |
[86] | ZHOU Z F, WANG R, CHEN B, et al. Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures[J]. Applied Thermal Engineering, 2016, 102:813-821.ARI B, et al. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation[J]. Arch Dermatol, 1995, 131(6): 695-700. |
[19] | NELSON J S, MILNER T E, ANVARI B, et al. Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels[J]. Lasers Surg Med, 1996, 19(2): 224-229. |
[20] | ZHOU Z F, CHEN B, WANG Y, et al. An experimental study on pulsed spray cooling with refrigerant R-404a in laser surgery[J]. Applied Thermal Engineering, 2012, 39(0): 29-36. |
[21] | LI D, CHEN B, WU W J, et al. Numerical Analysis of Cold Injury of Skin in Cryogen Spray Cooling for Laser Dermatologic Surgery[J]. Asme International Mechanical Engineering Congress and Exposition Proceedings, 2014, : 673-681. |
[22] | LIANG G, MUDAWAR I. Review of spray cooling-Part 1: Single-phase and nucleate boiling regimes, and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, : 1-32. |
[23] | KIM J. Spray cooling heat transfer: the state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 753-767. |
[24] | BROWN R, YORK J L. Sprays formed by flashing liquid jets[J]. Aiche Journal, 1962, 8(2): 149-153. |
[25] | REITZ R D. A Photographic Study of Flash-Boiling Atomization[J]. Aerosol Science and Technology, 1990, 12(3): 561-569. |
[26] | OZA R D. On the mechanism of flashing injection of initially subcooled fuels[J]. Journal of fluids engineering-transactions of the ASME, 1984, 106(1): 105-109. |
[27] | PETER E M, TAKIMOTO A, HAYASHI Y. Flashing and shattering phenomena of superheated liquid jets[J]. JSME International Journal, Series B: Fluids and Thermal Engineering 1994, 37(2): 313-321. |
[28] | SUH P B, YONG L S. An experimental investigation of the flash atomization mechanism[J]. Atomization and Sprays, 1994, 4(2): 159-179. |
[29] | 王新升, 陈斌. R134a 闪蒸喷雾过程中喷管内流动形态对喷雾特性的影响[J]. 化工学报, 2016, 67(12): 4929-4935.WANG X S, CHEN B, Effect of flow pattern inside nozzle on spray characteristics of R134a flashing spray[J], CIESC Journal, 2016, 67(12): 4929-4935. |
[30] | WANG X S, CHEN B, WANG R, et al. Experimental study on the relation between internal flow and flashing spray characteristics of R134a using straight tube nozzles[J]. International Journal of Heat and Mass Transfer, 2017, 115: 524-536. |
[31] | 周致富, 白飞龙, 王锐, 等. 带膨胀腔喷嘴制冷剂R134a闪蒸喷雾可视化研究[J]. 工程热物理学报, 2015, V36(12): 2646-2650.ZHOU Z F, BAI F L, WANG R, Visualization of the flashing spray generating by the expandion-chanmber nozzle using R134a[J]. Journal of Engineering Thermophysisc, 2015, 36(12): 2646-2650. |
[32] | 周致富, 陈斌, 白飞龙, 等. 新型喷嘴R404a闪蒸瞬态喷雾冷却传热特性[J]. 化工学报, 2015, 66(s1): 100-105.ZHOU Z F, CHEN B, BAI F L, el al. Heat transfer dynamics of R404a flashing pulsed spray cooling using expansion-chamber nozzle[J]. CIESC Journal, 2015, 66(s1): 100-105. |
[33] | PIKKULA B M, TORRES J H, TUNNELL J W, et al. Cryogen spray cooling: Effects of droplet size and spray density on heat removal[J]. Lasers Surg Med, 2001, 28(2): 103-112. |
[34] | PIKKULA B M, TUNNELL J W, CHANG D W, et al. Effects of droplet velocity, diameter, and film height on heat removal during cryogen spray cooling[J]. Ann Biomed Eng, 2004, 32(8): 1131-1140. |
[35] | KARAPETIAN E, AGUILAR G, KIMEL S, et al. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling[J]. Phys Med Biol, 2003, 48(1): N1-6. |
[36] | AGUILAR G, MAJARON B, POPE K, et al. Influence of nozzle-to-skin distance in cryogen spray cooling for dermatologic laser surgery[J]. Lasers Surg Med, 2001, 28(2): 113-120. |
[37] | AGUILAR G, MAJARON B, VERKRUYSSE W, et al. Theoretical and experimental analysis of droplet diameter, temperature, and evaporation rate evolution in cryogenic sprays[J]. International Journal of Heat and Mass Transfer, 2001, 44(17): 3201-3211. |
[38] | AGUILAR G, MAJARON B, KARAPETIAN E, et al. Experimental study of cryogen spray properties for application in dermatologic laser surgery[J]. IEEE Trans Biomed Eng, 2003, 50(7): 863-869. |
[39] | VU H, GARC A-VALLADARES O, AGUILAR G. Vapor/liquid phase interaction in flare flashing sprays used in dermatologic cooling[J]. International Journal of Heat and Mass Transfer, 2008, 51(23-24): 5721-5731. |
[40] | ZHIFU Z, WEITAO W, BIN C, et al. An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray[J]. International Journal of Heat and Mass Transfer, 2012, 55(15-16): 4460-4468. |
[41] | YILDIZ D, RAMBAUD P, BEECK J V, et al. Evolution of the spray characteristics in superheated liquid jet atomization in function of initial flow conditions[C]. 10th International Conference on Liquid Atomization and Spray Systems, 2006. |
[42] | YILDIZ D, VAN BEECK J P A J, RIETHMULLER M L. Feasibility Exploration of Laser-based Techniques for Characterization of a Flashing Jet[J]. Particle and Particle Systems Characterization, 2004, 21(5): 390-402. |
[43] | YILDIZ D, RAMBAUD P, BEECK J V. Break-up, Droplet Size and Velocity Characterizations of a Two-phase Flashing R134a Jet[C]. 5th International Conference on Multiphase Flow, 2004. |
[44] | YILDIZ D, RAMBAUD P, VAN BEECK J, et al. Thermal characterization of a R134A two-phase flashing jet[C]. 9th International Conference on Liquid Atomization and Spray Systems ICLASS, 2003, Sorreno, Italy, 2003. |
[45] | ZHOU Z F, WU W T, WANG G X, et al. Thermal characteristics of flashing spray of volatile R134a cryogens[C]. ASME 2011 International Mechanical Engineering Congress and Exposition, 2011 : 649-656. |
[46] | AGUILAR G, WANG G X, NELSON J S. Effect of spurt duration on the heat transfer dynamics during cryogen spray cooling[J]. Phys Med Biol, 2003, 48(14): 2169-2181. |
[47] | TORRES J H, TUNNELL J W, PIKKULA B M, et al. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application[J]. Lasers Surg Med, 2001, 28(5): 477-486. |
[48] | TUNNELL J W, CHANG D W, JOHNSTON C, et al. Effects of cryogen spray cooling and high rdiant exposures on selective vascular injury during laser irradiation of human skin[J]. Arch Dermatol, 2003, 139(1): 743-750. |
[49] | TUNNELL J W, TORRES J H, ANVARI B. Methodology for Estimation of Time-Dependent Surface Heat Flux due to Cryogen Spray Cooling[J]. Ann Biomed Eng, 2002, 30(1): 19-33. |
[50] | MAJARON B, AGUILARA G, BASINGERA B, et al. Sequential cryogen spraying for heat flux control at the skin surface[C]. Proc. SPIE, 2001 4244(4):74-81. |
[51] | MAJARON B, SVAASAND L O, AGUILAR G, et al. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment[J]. Phys Med Biol, 2002, 47(18): 3275-3288. |
[52] | AGUILAR G, WANG G X, NELSON J S. Dynamic behavior of cryogen spray cooling: effects of spurt duration and spray distance[J]. Lasers Surg Med, 2003, 32(2): 152-159. |
[53] | 周致富, 吴威涛, 王国祥, 等. 制冷剂闪蒸瞬态喷雾冷却表面温度的快速测量[J]. 化工学报, 2011, 62(11): 2691-2695.ZHOU Z F, WU W T, WANG G X, et al. Thin-film thermocouples for rapid measurement of transient surface temperature in cryogen spray cooling[J]. CIESC Journal, 2011, 62(11): 2691-2695. |
[54] | ZHOU Z F, XU T Y, CHEN B. Algorithms for the estimation of transient surface heat flux during ultra-fast surface cooling[J]. International Journal of Heat and Mass Transfer, 2016, 100: 1-10. |
[55] | TIAN J M, CHEN B, ZHOU Z F. Methodology of surface heat flux estimation for 2D multi-layer mediums[J]. International Journal of Heat and Mass Transfer, 2017, : 675-687. |
[56] | AGUILAR G, VU H, NELSON J S. Influence of angle between the nozzle and skin surface on the heat flux and overall heat extraction during cryogen spray cooling[J]. Phys. Med. Biol, 2004, 49(10): N147-N153. |
[57] | WANG G X, AGUILAR G, NELSON J S. Dynamic behavior of cryogen spray cooling:effect of spray distance[C]. ASME National Heat Transfer Conference, 2003. |
[58] | JIA W, AGUILAR G, WANG G X, et al. Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures[J]. Phys. Med. Biol. , 2004, 49(23): 5295-5308. |
[59] | JIA W, AGUILAR G, VERKRUYSSE W, et al. Improvement of port wine stain laser therapy by skin preheating prior to cryogen spray cooling: a numerical simulation[J]. Lasers Surg Med, 2006, 38(2): 155-162. |
[60] | FRANCO W, LIU J, WANG G X, et al. Radial and temporal variations in surface heat transfer during cryogen spray cooling[J]. Phys Med Biol, 2005, 50(2): 387-397. |
[61] | FRANCO W, WANG G X, NELSON J S, et al. Radial heat transfer dynamics during cryogen spray cooling[C]. ASME International Mechanical Engineering Congress and Exposition, 2004. |
[62] | FRANCO W, LIU J, ROMERO-MENDEZ R, et al. Extent of lateral epidermal protection afforded by a cryogen spray against laser irradiation[J]. Lasers Surg Med, 2007, 39(5): 414-421. |
[63] | TORRES J H, NELSON J S, TANENBAUM B S, et al. Estimation of Internal Skin Temperatures in Response to Cryogen Spray Cooling: Implications for Laser Therapy of Port Wine Stains[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1058-1065. |
[64] | TUNNELL J W, CHANG D W, JOHNSTON C, et al. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin[J]. Arch Dermatol, 2003, 139(6): 743-750. |
[65] | TUNNELL J W, NELSON J S, TORRES J H, et al. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study[J]. Lasers in Surgery and Medicine, 2000, 27(10): 373-383. |
[66] | PIKKULA B M, TUNNELL J W, ANVARI B. Methodology for characterizing heat removal mechanism in human skin during cryogen spray cooling[J]. Ann Biomed Eng, 2003, 31(5): 493-504. |
[67] | AGUILAR G, VERKRUYSSE W, MAJARON B, et al. Measurement of Heat Flux and Heat Transfer Coefficient during Continuous Cryogen Spray Cooling for Laser Dermatologic Surgery[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(6): 1013-1021. |
[68] | WANG R, ZHOU Z F, CHEN B, et al. Surface heat transfer characteristics of R404A pulsed spray cooling with an expansion-chambered nozzle for laser dermatology[J]. International Journal of Refrigeration, 2015, 60: 206-216. |
[69] | RAMIREZ-SAN-JUAN J C, CHOI B, FRANCO W, et al. Effect of ambient humidity on light transmittance through skin phantoms during cryogen spray cooling[J]. Physics in Medicine and Biology, 2006, 51(1): 113-120. |
[70] | MAJARON B, KIMEL S, VERKRUYSSE W, et al. Cryogen spray cooling in laser dermatology: Effects of ambient humidity and frost formation[J]. Lasers Surg Med, 2001, 28(5): 469-476. |
[71] | VU H, AGUILAR G, STUART NELSON J. Passive mass deposition control of cryogen sprays through the use of wire meshes[J]. Lasers Surg Med, 2004, 34(4): 329-334. |
[72] | BASINGER B, AGUILAR G, NELSON J S. Effect of skin indentation on heat transfer during cryogen spray cooling[J]. Lasers Surg Med, 2004, 34(2): 155-163. |
[73] | TUQAN A T, KELLY K M, AGUILAR G, et al. Evaluation of single versus multiple cryogen spray cooling spurts on in vitro model human skin[J]. Lasers Med Sci, 2005, 20(2): 80-86. |
[74] | KAO B, KELLY K M, AGUILAR G, et al. Evaluation of cryogen spray cooling exposure on in vitro model human skin[J]. Lasers Surg Med, 2004, 34(2): 146-154. |
[75] | TIAN J M, CHEN B, LI D, et al. Transient spray cooling: Similarity of dynamic heat flux for different cryogens, nozzles and substrates[J]. International Journal of Heat & Mass Transfer, 2017, 108: 561-571. |
[76] | CHEN J K, GHASRI P, AGUILAR G, et al. An overview of clinical and experimental treatment modalities for port wine stains[J]. J Am Acad Dermatol, 2012, : . |
[77] | AGUILAR G, CHOI B, BROEKGAARDEN M, et al. An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains[J]. Ann Biomed Eng, 2012, 40(2): 486-506. |
[78] | DAI T, PIKKULA B M, TUNNELL J W, et al. Thermal response of human skin epidermis to 595-nm laser irradiation at high incident dosages and long pulse durations in conjunction with cryogen spray cooling: An ex-vivo study[J]. Lasers Surg Med, 2003, 33(1): 16-24. |
[79] | DAI T, YASEEN M A, DIAGARADJANE P, et al. Comparative study of cryogen spray cooling with R-134a and R-404a: implications for laser treatment of dark human skin[J]. J Biomed Opt, 2006, 11(4): 041116. |
[80] | ZHOU Z F, CHEN B, WANG R, et al. Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens[J]. Experimental Thermal and Fluid Science, 2017, 82: 189-197. |
[81] | LI D, CHEN B, WU W J, et al. Multi-scale modeling of tissue freezing during cryogen spray cooling with R134a, R407c and R404a[J]. Applied Thermal Engineering, 2014, 73(2): 1489-1500. |
[82] | AGUILAR G, SVAASAND L O, NELSON J S. Effects of hypobaric pressure on human skin: feasibility study for port wine stain laser therapy (part I)[J]. Lasers Surg Med, 2005, 36(2): 124-129. |
[83] | AGUILAR G, FRANCO W, LIU J, et al. Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part Ⅱ)[J]. Lasers Surg Med, 2005, 36(2): 130-135. |
[84] | FRANCO W, CHILDERS M, STUART NELSON J, et al. Laser surgery of port wine stains using local vaccum pressure: Changes in calculated energy deposition (Part Ⅱ)[J]. Lasers Surg Med, 2007, 39(2): 118-127. |
[85] | ZHOU Z F, CHEN B, WANG R, et al. Coupling effect of hypobaric pressure and spray distance on heat transfer dynamics of R134a pulsed flashing spray cooling[J]. Experimental Thermal and Fluid Science, 2016, 70: 96-104. |
[86] | ZHOU Z F, WANG R, CHEN B, et al. Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures[J]. Applied Thermal Engineering, 2016, 102: 813-821. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[8] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||