化工学报 ›› 2018, Vol. 69 ›› Issue (1): 69-75.DOI: 10.11949/j.issn.0438-1157.20170992
冯建朋1,2, 张香平1, 尚大伟1,2, 高红帅1
收稿日期:
2017-05-08
修回日期:
2017-08-30
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
张香平
基金资助:
国家杰出青年科学基金项目(21425625);国家自然科学基金面上项目(51574215);山西省重点研发计划重点项目(201603D312003)。
FENG Jianpeng1,2, ZHANG Xiangping1, SHANG Dawei1,2, GAO Hongshuai1
Received:
2017-05-08
Revised:
2017-08-30
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170992
Supported by:
supported by the National Science Fund for Distinguished Young Scholars (21425625), the National Natural Science Foundation of China (51574215) and the Key Research and Development Program of Shanxi Province in China (201603D312003).
摘要:
近百年来,伴随着矿石燃料的大量消耗,CO2的排放量剧增,引发了全球性的生态环境和社会问题。CO2同时也是廉价且可再生的碳资源,可作为生产醇、醚、酸、酯等重要化工品的原料。在众多吸引力十足的CO2利用路线中,作为清洁、可控的反应过程,电化学还原固定CO2技术在温和条件下生产化学品方面具有独特的优势。离子液体以其特有的性质被广泛用于电化学还原CO2过程,本文对目前国内外离子液体介质中电化学还原CO2的研究现状进行了综述,介绍了离子液体介质中电化学还原CO2的主要反应及基本原理;针对离子液体对CO2高效活化和转化等关键科学问题进行深入探讨,提出新型功能化离子液体的应用将成为CO2电化学还原领域的发展方向和热点。
中图分类号:
冯建朋, 张香平, 尚大伟, 高红帅. 离子液体中电化学还原CO2研究评述与展望[J]. 化工学报, 2018, 69(1): 69-75.
FENG Jianpeng, ZHANG Xiangping, SHANG Dawei, GAO Hongshuai. Review and prospect of CO2 electro-reduction in ionic liquids[J]. CIESC Journal, 2018, 69(1): 69-75.
[1] | MITROVI? M, MALONE A. Carbon capture and storage (CCS) demonstration projects in Canada[J]. Energy Procedia, 2011, 4:5685-5691. |
[2] | SAHU G C, BANDYOPADHYAY S, FOO D C Y, et al. Targeting for optimal grid-wide deployment of carbon capture and storage (CCS) technology[J]. Process Safety and Environmental Protection, 2014, 92(6):835-848. |
[3] | SWAIN P K, DAS L M, NAIK S N. Biomass to liquid:a prospective challenge to research and development in 21st century[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4917-4933. |
[4] | BALIBAN R C, ELIA J A, FLOUDAS C A. Novel natural gas to liquids processes:process synthesis and global optimization strategies[J]. AIChE J., 2013, 59(2):505-531. |
[5] | SALKUYEH Y K, ADAMS Ⅱ T A. Combining coal gasification, natural gas reforming, and external carbonless heat for efficient production of gasoline and diesel with CO2 capture and sequestration[J]. Energy Conversion & Management, 2013, 74(10):492-504. |
[6] | ZHANG W N. Automotive fuels from biomass via gasification[J]. Fuel Processing Technology, 2010, 91(8):866-876. |
[7] | CENTI G, PERATHONER S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels[J]. Catal. Today, 2009, 148(3/4):191-205. |
[8] | LIU C J. Do we have a rapid solution for CO2 utilization? A perspective from China[J]. Greenh. Gases, 2012, 2(2):75-76. |
[9] | WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7):3703-3727. |
[10] | SAEIDI S, AMIN N A S, RAHIMPOUR M R. Hydrogenation of CO2 to value-added products-a review and potential future developments[J]. Journal of CO2 Utilization, 2014, 5:66-81. |
[11] | LIU C J, YE J Y, JIANG J J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. ChemCatChem, 2011, 3(3):529-541. |
[12] | PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43(22):7813-7837. |
[13] | NOURELDIN M M B, ELBASHIR N O, GABRIEL K J, et al. A Process integration approach to the assessment of CO2 fixation through dry reforming[J]. ACS Sustain. Chem. Eng., 2015, 3(4):625-636. |
[14] | COSTENTIN C, ROBERT M, SAVEANT J M. Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013, 42(6):2423-2436. |
[15] | QIAO J L, LIU Y Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2013, 43(2):631-675. |
[16] | FIGUEIREDO M C, LEDEZMA-YANEZ I, KOPER M T M. In situ spectroscopic study of CO2 electroreduction at copper electrodes in acetonitrile[J]. ACS Catal., 2016, 6(4):2382-2392. |
[17] | VARLEY J B, HANSEN H A, AMMITZBOLL N L, et al. Ni-Fe-S cubanesin CO2 reduction electrocatalysis:a DFT study[J]. ACS Catal., 2013, 3(11):2640-2643. |
[18] | ROBERTS F S, KUHL K P, NILSSON A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angewandte Chemie-International Edition, 2015, 54(17):5179-5182. |
[19] | LU Q, ROSEN J, JIAO F. Nanostructured metallic electrocatalysts for carbon dioxide reduction[J]. ChemCatChem, 2015, 7(1):38-47. |
[20] | GAO S, LIN Y, JIAO X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584):68-71. |
[21] | COLE E B, LAKKARAJU P S, RAMPULLA D M, et al. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol:kinetic, mechanistic, and structural insights[J]. Journal of the American Chemical Society, 2010, 132(33):11539-11551. |
[22] | GAO S, JIAO X C, SUN Z T, et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate[J]. Angewandte Chemie-International Edition, 2016, 55(2):698-702. |
[23] | WISHART J F. Energy applications of ionic liquids[J]. Energy & Environmental Science, 2009, 2(9):956-961. |
[24] | SEDDON K R. Ionic liquids:a taste of the future[J]. Nat. Mater., 2003, 2(6):363-365. |
[25] | ZHANG S J, HUO F. Angstrom science:exploring aggregates from a new viewpoint[J]. Green Energy & Environment, 2016, 1(1):75-78. |
[26] | ROSEN B A, SALEHI-KHOJIN A, THORSON M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011, 334(6056):643-644. |
[27] | WANG C M, LUO H M, LUO X Y, et al. Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems[J]. Green Chem., 2010, 12(11):2019-2023. |
[28] | WANG C M, GUO Y, ZHU X, et al. Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidentate cation coordination[J]. Chemical Communications, 2012, 48(52):6526-6528. |
[29] | DING F, HE X, LUO X Y, et al. Highly efficient CO2 capture by carbonyl-containing ionic liquids through Lewis acid-base and cooperative C-H…O hydrogen bonding interaction strengthened by the anion[J]. Chemical Communications, 2014, 50(95):15041-15044. |
[30] | LUO X Y, GUO Y, DING F, et al. Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions[J]. Angewandte Chemie-International Edition, 2014, 53(27):7053-7057. |
[31] | CADENA C, ANTHONY J L, SHAH J K, et al. Why is CO2 so soluble in imidazolium-based ionic liquids?[J]. Journal of the American Chemical Society, 2004, 126(16):5300-5308. |
[32] | WHIPPLE D T, KENIS P J A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction[J]. J. Physchem. Lett., 2010, 1(24):3451-3458. |
[33] | 陶映初, 吴少晖, 张曦. CO2电化学还原研究进展[J]. 化学通报, 2001, (5):272-277. TAO Y C, WU S H, ZHANG X. Progress in CO2 electrochemical reduction[J]. Chem. Bull., 2001, (5):272-277. |
[34] | INNOCENT B, PASQUIER D, ROPITAL F, et al. FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium[J]. Appl. Catal. B-Environ., 2010, 94(3/4):219-224. |
[35] | 魏文英, 尹燕华, 韩金玉. 水溶性介质中CO2电催化还原研究进展[J]. 化工进展, 2007, 26(2):2-6. WEI W Y, YIN Y H, HAN J Y. Progress in electrocatalytic reduction of CO2 in aqueous medium[J]. Chem. Ind. Eng. Prog., 2007, 26(2):2-6. |
[36] | ROSEN B A, HAAN J L, MUKHERJEE P, et al. In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide[J]. J. Phys. Chem. C, 2012, 116(29):15307-15312. |
[37] | YANG D W, LI Q Y, SHEN F X, et al. Electrochemical impedance studies of CO2 reduction in ionic liquid/organic solvent electrolyte on Au electrode[J]. Electrochimica Acta, 2015, 189:32-37. |
[38] | MARTINDALE B C M, COMPTON R G. Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid[J]. Chemical Communications, 2012, 48(52):6487-6489. |
[39] | CHOI J, BENEDETTI T M, JALILI R, et al. High performance Fe porphyrin/ionic liquid Co-catalyst for electrochemical CO2 reduction[J]. Chemistry-a European Journal, 2016, 22(40):14158-14161. |
[40] | BARROSSE-ANTLE L E, COMPTON R G. Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate[J]. Chemical Communications, 2009, 25:3744-3746. |
[41] | SNUFFIN L L, WHALEY L W, YU L. Catalytic electrochemical reduction of CO2 in ionic liquid EMIMBF3Cl[J]. J. Electrochem. Soc., 2011, 158(9):F155-F158. |
[42] | ROSEN J, HUTCHINGS G S, LU Q, et al. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces[J]. ACS Catal., 2015, 5(7):4293-4299. |
[43] | SUN L Y, RAMESHA G K, KAMAT P V, et al. Switching the reaction course of electrochemical CO2 reduction with ionic liquids[J]. Langmuir, 2014, 30(21):6302-6308. |
[44] | ZHAO S F, HORNE M, BOND A M, et al. Is the imidazolium cation a unique promoter for electrocatalytic reduction of carbon dioxide?[J]. J. Phys. Chem. C, 2016, 120(42):23989-24001. |
[45] | TANNER E E L, BATCHELOR-MCAULEY C, COMPTON R G. Carbon dioxide reduction in room-temperature ionic liquids:the effect of the choice of electrode material, cation, and anion[J]. J. Phys. Chem. C, 2016, 120(46):26442-26447. |
[46] | OH Y, HU X L. Ionic liquids enhance the electrochemical CO2 reduction catalyzed by MoO2[J]. Chemical Communications, 2015, 51(71):13698-13701. |
[47] | ASADI M, KIM K, LIU C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid[J]. Science, 2016, 353(6298):467-470. |
[48] | HOLLINGSWORTH N, TAYLOR S F R, GALANTE M T, et al. Reduction of carbon dioxide to formate at low overpotential using a superbase ionic liquid[J]. Angewandte Chemie-International Edition, 2015, 54(47):14164-14168. |
[49] | ZHU Q G, MA J, KANG X C, et al. Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture[J]. Angewandte Chemie-International Edition, 2016, 55(31):9012-9016. |
[50] | WATKINS J D, BOCARSLY A B. Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes[J]. ChemSusChem, 2014, 7(1):284. |
[51] | HUAN T N, SIMON P, ROUSSE G, et al. Porous dendritic copper:an electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte[J]. Chemical Science, 2017, 8(1):742-747. |
[52] | WANG Y Q, HATAKEYAMA M, OGATA K, et al. Activation of CO2 by ionic liquid EMIM-BF4 in the electrochemical system:a theoretical study[J]. Physical Chemistry Chemical Physics, 2015, 17(36):23521-23531. |
[53] | LU W W, JIA B, CUI B L, et al. Efficient photoelectrochemical reduction of CO2 to formic acid with functionalized ionic liquid as absorbent and electrolyte[J]. Angewandte Chemie, 2017, 56(39):11851-11854. |
[54] | JELETIC M S, MOCK M T, APPEL A M, et al. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions[J]. Journal of the American Chemical Society, 2013, 135(31):11533-11536. |
[55] | CEVASCO G, CHIAPPE C. Are ionic liquids a proper solution to current environmental challenges?[J]. Green Chem., 2014, 16(5):2375-2385. |
[56] | ALVAREZ-GUERRA M, ALBO J, ALVAREZ-GUERRA E, et al. Ionic liquids in the electrochemical valorisation of CO2[J]. Energy & Environmental Science, 2015, 8(9):2574-2599. |
[57] | BENSON E E, KUBIAK C P, SATHRUM A J, et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels[J]. Chemical Society Reviews, 2009, 38(1):89-99. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[3] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[6] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[7] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[8] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[9] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[10] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[11] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[12] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[13] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[14] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[15] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||