1 |
崔万新. 微尺度热分析关键技术研究[D]. 西安: 西安电子科技大学, 2007.
|
|
CuiW X. Research on the key technology of microscale thermal analysis[D]. Xi an: Xidian University, 2007.
|
2 |
PaisM R, ChowL C, MahefkeyE T. Surface roughness and its effects on the heat transfer mechanism in spray cooling[J]. Journal of Heat Transfer, 1992, 114(1): 211-219.
|
3 |
SienskiK, EdenR, SchaeferD. 3-D electronic interconnect packaging[C]//Aerospace Applications Conference. IEEE, 1996: 363-373.
|
4 |
MudawarI. Assessment of high-heat-flux thermal management schemes[J]. Components and Packaging Technologies IEEE Transactions, 2001, 24(2): 122-141.
|
5 |
KandlikarS, BapatA. Evaluation of jet impingement, spray and microchannel chip cooling or high heat flux removal[J]. Heat Transfer Engineering, 2007, 28(11): 911-923.
|
6 |
ZhaoR, ChengW L, LiuQ N, et al. Study on heat transfer performance of spray cooling: model and analysis[J]. Heat and Mass Transfer, 2010, 46(8/9): 821-829.
|
7 |
ChengW L, ZhangW W, ChenH, et al. Spray cooling and flash evaporation cooling: the current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628.
|
8 |
宋玲利, 张仁元, 毛凌波. 纳米流体光热转换特性的研究[J]. 广东工业大学学报, 2011, 28(2): 56-58.
|
|
SongL L, ZhangR Y, MaoL B. Study on the properties of photothermal conversion of nanofluids[J]. Journal of Guangdong University of Technology, 2011, 28(2): 56-58.
|
9 |
KimS J, BangI C, BuongiornoJ, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 4105-4116.
|
10 |
UtomoA T, PothH, RobbinsP T, et al. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7772-7781.
|
11 |
王磊. 喷雾冷却及其影响因素的实验与数值研究[D]. 北京: 中国科学院工程热物理研究所, 2009.
|
|
WangL. Experimental and numerical study on spray cooling and its influencing factors[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2009.
|
12 |
MohapatraS S, AndhareS, ChakrabortyS, et al. Experimental study and optimization of air atomized spray with surfactant added water to produce high cooling rate[J]. Journal of Enhanced Heat Transfer, 2012, 19(5): 397-408.
|
13 |
HoracekB, KigerK T, KimJ. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48(8): 1425-1438.
|
14 |
CuiQ, ChandraS, MccahanS. The effect of dissolving gases or solids in water droplets boiling on a hot surface[J]. Journal of Heat Transfer, 2001, 123(4): 719-728.
|
15 |
ChengW L, XieB, HanF Y. An experimental investigation of heat transfer enhancement by addition of high-alcohol surfactant (HAS) and dissolving salt additive (DSA) in spray cooling[J]. Experimental Thermal and Fluid Science, 2013, 45: 198-202.
|
16 |
CuiQ. The effect of dissolving salts in water sprays used for quenching a hot surface(Ⅱ): Spray cooling [J]. International Journal of Heat and Mass Transfer, 2003, 125: 333-338.
|
17 |
张雨薇, 刘妮. 含有添加剂的喷雾冷却研究进展[J]. 电子元件与材料, 2016, (1): 18-22.
|
|
ZhangY W, LiuN. Research progress of spray cooling with additives[J]. Electronic Components and Materials, 2016, (1): 18-22.
|
18 |
RavikumarS V, JhaJ M, SarkarI, et al. Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol[J]. Applied Thermal Engineering, 2014, 64(1/2): 64-75.
|
19 |
BhattN H, RajR, VarshneyP, et al. Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanol-Tween20-water solution at very high initial surface temperature[J]. International Journal of Heat and Mass Transfer, 2017, 110: 330-347.
|
20 |
章玮玮. 紧凑型喷雾冷却系统强化换热的研究[D]. 合肥: 中国科学技术大学, 2017.
|
|
ZhangW W. Study on intensive heat transfer in a compact spray cooling system[D]. Hefei: University of Science and Technology of China, 2017.
|
21 |
ChengW L, ZhangW W, JiangL J, et al. Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime[J]. Applied Thermal Engineering, 2015, 80: 160-167.
|
22 |
CourseyJ S. Enhancement of spray cooling heat transfer using extended surfaces and nanofluids[D]. Maryland: University of Maryland, 2007.
|
23 |
金正一, 李凤岐. 一元线性参数最小二乘法中斜率及截距的不确定度[J]. 沈阳理工大学学报, 2000, 19(1): 73-76.
|
|
JinZ Y, LiF Q. Unceartainty of the gradiene and the intercept in the least square method of the monadic linear parameter[J]. Journal of Shenyang Institute of Technology, 2000, 19(1): 73-76.
|
24 |
MoffatR J. Contributions to the theory of single-sample uncertainty analysis[J]. Journal of Fluids Engineering, Transactions of the ASME, 1982, 104: 250-258.
|
25 |
ChenR H, ChowL C, NavedoJ E. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 4033-4043.
|
26 |
SomasundaramS, TayA A O. Comparative study of intermittent spray cooling in single and two phase regimes[J]. International Journal of Thermal Sciences, 2013, 74: 174-182.
|
27 |
WuY W, HouY D, WangL, et al. Review on heat transfer and flow characteristics of liquid sodium (1): Single-phase[J]. Progress in Nuclear Energy, 2008, 104: 306-316.
|
28 |
LuG, WangX D, YanW M. Nucleate boiling inside small evaporating droplets: an experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2017, 108(B): 2253-2261.
|
29 |
BreitenbachJ, RoismanI V, TropeaC. Heat transfer in the film boiling regime: single drop impact and spray cooling[J]. International Journal of Heat and Mass Transfer, 2017, 110: 34-42.
|
30 |
ClayM A, MiksisM J. Effects of surfactant on droplet spreading[J]. Physics of Fluids, 2004, 16(8): 3070-3078.
|