化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4387-4396.DOI: 10.11949/0438-1157.20190418
曲江源1(),刘霄龙2,关彦军1,齐娜娜1,滕阳1,徐文青2,朱廷钰2,张锴1()
收稿日期:
2019-04-21
修回日期:
2019-08-16
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
张锴
作者简介:
曲江源(1993—),男,博士研究生,基金资助:
Jiangyuan QU1(),Xiaolong LIU2,Yanjun GUAN1,Nana QI1,Yang TENG1,Wenqing XU2,Tingyu ZHU2,Kai ZHANG1()
Received:
2019-04-21
Revised:
2019-08-16
Online:
2019-11-05
Published:
2019-11-05
Contact:
Kai ZHANG
摘要:
以256 m2烧结机O3氧化烧结烟气中NO过程为研究对象,采用CFD数值模拟方法考察了含O3喷射气体与烧结烟气流动及NO低温氧化特性。通过与76步复杂反应机理的对比验证了11步简化机理的适用性,分析了反应温度、O3/NO摩尔比以及O3分布特性对NO氧化效率和不同价态NO x 转化率的影响规律。通过对简单结构反应器的模拟结果表明:NO3稳定性较差,烟道内主要氧化产物为NO2与N2O5;随反应温度升高,NO氧化效率基本保持不变,NO2转化率提高且提升速率逐渐增大而N2O5呈相反规律;随O3/NO摩尔比增大,NO氧化效率提高但提升速率逐渐减小,NO2转化率先增大后在摩尔比高于1.25时开始减小,而各工况均产生N2O5且生成量逐渐增大,其原因为射流核心区可提供高O3/NO摩尔比条件;通过优化O3分布器结构改善O3与烟气接触与混合条件,O3与NO摩尔比为1.0、停留时间为0.87 s时NO氧化率可提高约12.8%,摩尔比为2.0、停留时间为1.73 s时N2O5转化率可提高约15.6%。
中图分类号:
曲江源, 刘霄龙, 关彦军, 齐娜娜, 滕阳, 徐文青, 朱廷钰, 张锴. 基于CFD模拟的臭氧低温氧化烧结烟气中NO过程分析[J]. 化工学报, 2019, 70(11): 4387-4396.
Jiangyuan QU, Xiaolong LIU, Yanjun GUAN, Nana QI, Yang TENG, Wenqing XU, Tingyu ZHU, Kai ZHANG. CFD simulation of low-temperature NO oxidation using ozone in sintering flue gas[J]. CIESC Journal, 2019, 70(11): 4387-4396.
Reaction | A | β | E a | Order | |
---|---|---|---|---|---|
R1 | O3 +NO | 8.43×1011 | 0 | 10.98 | 2 |
R2 | O3+NO2 | 8.43×1010 | 0 | 20.54 | 2 |
R3 | NO2+NO3 | 7.89×1017 | -3.90 | 0 | 3 |
R4 | H2O+NO+NO2 | 1.60×108 | 0 | 0 | 3 |
R5 | H2O+N2O5 | 1.51×102 | 0 | 0 | 2 |
R6 | HNO2+NO3 | 1.21×109 | 0 | 0 | 2 |
R7 | HNO2+O3 | 3.01×105 | 0 | 0 | 2 |
R8 | NO3 | 2.50×106 | 0 | 50.72 | 1 |
R9 | NO3+NO3 | 5.12×1011 | 0 | 20.37 | 2 |
R10 | NO2+NO3 | 2.71×1010 | 0 | 10.48 | 2 |
R11 | NO+NO3 | 1.08×1013 | 0 | -0.91 | 2 |
表1 O3-NO x 化学反应简化机理与动力学参数
Table 1 O3-NO x simplified reaction mechanism and kinetic parameters
Reaction | A | β | E a | Order | |
---|---|---|---|---|---|
R1 | O3 +NO | 8.43×1011 | 0 | 10.98 | 2 |
R2 | O3+NO2 | 8.43×1010 | 0 | 20.54 | 2 |
R3 | NO2+NO3 | 7.89×1017 | -3.90 | 0 | 3 |
R4 | H2O+NO+NO2 | 1.60×108 | 0 | 0 | 3 |
R5 | H2O+N2O5 | 1.51×102 | 0 | 0 | 2 |
R6 | HNO2+NO3 | 1.21×109 | 0 | 0 | 2 |
R7 | HNO2+O3 | 3.01×105 | 0 | 0 | 2 |
R8 | NO3 | 2.50×106 | 0 | 50.72 | 1 |
R9 | NO3+NO3 | 5.12×1011 | 0 | 20.37 | 2 |
R10 | NO2+NO3 | 2.71×1010 | 0 | 10.48 | 2 |
R11 | NO+NO3 | 1.08×1013 | 0 | -0.91 | 2 |
Case index | Mixing condition | Reactor length L | Res. time t m/s | [O3]/[NO] |
---|---|---|---|---|
A | distributor Ⅰ | 3D | 0.87 | 1.0 |
B | distributor Ⅱ | 3D | 0.87 | 1.0 |
C | distributor Ⅰ | 6D | 1.73 | 2.0 |
D | distributor Ⅱ | 6D | 1.73 | 2.0 |
E | well-mixed | 6D | 1.73 | 2.0 |
表2 各工况混合条件与反应条件(T=378 K, [NO]in=2.0×10-4)
Table 2 Mixing and reaction conditions for different cases (T=378 K, [NO]in=2.0×10-4)
Case index | Mixing condition | Reactor length L | Res. time t m/s | [O3]/[NO] |
---|---|---|---|---|
A | distributor Ⅰ | 3D | 0.87 | 1.0 |
B | distributor Ⅱ | 3D | 0.87 | 1.0 |
C | distributor Ⅰ | 6D | 1.73 | 2.0 |
D | distributor Ⅱ | 6D | 1.73 | 2.0 |
E | well-mixed | 6D | 1.73 | 2.0 |
1 | 闫伯骏, 邢奕, 路培, 等 . 钢铁行业烧结烟气多污染物协同净化技术研究进展[J]. 工程科学学报, 2018, 40(7): 767-775. |
Yan B J , Xing Y , Lu P , et al . A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry[J]. Chinese Journal of Engineering, 2018, 40(7): 767-775. | |
2 | 朱廷钰, 刘青, 李玉然, 等 . 钢铁烧结烟气多污染物的排放特征及控制技术[J]. 科技导报, 2014, 32(33): 51-56. |
Zhu T Y , Liu Q , Li Y R , et al . Emission characteristics of multiple pollutants from iron-steel sintering flue gas and review of control technologies[J]. Science & Technology Review, 2014, 32(33): 51-56. | |
3 | 纪瑞军, 徐文青, 王健, 等 . 臭氧氧化脱硝技术研究进展[J]. 化工学报, 2018, 69(6): 2353-2363. |
Ji R J , Xu W Q , Wang J , et al . Research progress of ozone oxidation denitrification technology[J]. CIESC Journal, 2018, 69(6): 2353-2363. | |
4 | 李和平, 吴胜利, 韩加友 . “臭氧氧化+循环流化床”法烧结烟气净化技术的应用[J]. 烧结球团, 2018, 43(6): 1-6+18. |
Li H P , Wu S L , Han J Y . Application of sintering flue gas cleaning technology with method of “ozone oxidation and circulating fluidized bed”[J]. Sintering and Pelletizing, 2018, 43(6): 1-6+18. | |
5 | 杨颖欣, 薛学良, 刘勇, 等 . 钢铁烧结烟气臭氧氧化脱硝正交实验研究[J]. 环境科学与技术, 2018, 41(S1): 139-144. |
Yang Y X , Xue X L , Liu Y , et al . Orthogonal experiments on ozonation denitration of iron-steel sintering flue gas[J]. Environmental Science & Technology, 2018, 41 (S1): 139-144. | |
6 | 郄俊懋, 张春霞, 王海风, 等 . 烧结烟气典型污染物排放形势及减排技术分析[J]. 烧结球团, 2016, 41(6): 59-64. |
Xi J M , Zhang C X , Wang H F , et al . Analysis of emission situation and emission reduction technology of typical sintering flue gas pollutants[J]. Sintering and Pelletizing, 2016, 41(6): 59-64. | |
7 | Lin F , Wang Z H , Ma Q , et al . N2O5 Formation mechanism during the ozone-based low-temperature oxidation DeNO x process[J]. Energy & Fuels, 2016, 30(6): 5101-5107. |
8 | 代绍凯, 徐文青, 陶文亮, 等 . 臭氧氧化法应用于燃煤烟气同时脱硫脱硝脱汞的实验研究[J]. 环境工程, 2014, 32(10): 85-89. |
Dai S K , Xu W Q , Tao W L , et al . Experimental research for the application of O3 oxidation in simultaneous removal of SO2, NO and Hg in coal-fired flue gas[J]. Environmental Engineering, 2014, 32(10): 85-89. | |
9 | 庄卓楷 . 基于数值模拟的NO臭氧氧化反应、双旋流气气混合器和湿法脱硝模型研究[D]. 杭州: 浙江大学, 2015. |
Zhuang Z K . Research on no ozonation process & double swirl gas mixer & denitration model in spray absorber based on numerical simulation[D]. Hangzhou: Zhejiang University, 2015. | |
10 | 王智化, 周俊虎, 温正城, 等 . 利用臭氧同时脱硫脱硝过程中NO的氧化机理研究[J]. 浙江大学学报(工学版), 2007, 41(5): 765-769. |
Wang Z H , Zhou J H , Wen Z C , et al . Mechanism investigation on NO oxidization during NO x and SO2 simultaneous removal process by ozone [J].Journal of Zhejiang University(Engineering Science), 2007, 41(5): 765-769. | |
11 | 杨业, 徐超群, 朱燕群, 等 . 臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝[J]. 化工学报, 2016, 67(5): 2041-2047. |
Yang Y , Xu C Q , Zhu Y Q , et al . Simultaneous removal of SO2 and NO x by combination of ozone oxidation and Na2S2O3 solution spray[J]. CIESC Journal, 2016, 67(5): 2041-2047. | |
12 | Zheng C H , Xu C R , Zhang Y X , et al . Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for WFGD system[J]. Applied Energy, 2014, 129: 187-194. |
13 | 李典泽, 唐晓龙, 易红宏, 等 . 臭氧定量氧化联合湿法吸收同时脱硫脱硝[J]. 环境工程学报, 2017, 11(6): 3570-3576. |
Li D Z , Tang X L , Yi H H , et al . Simultaneous removal of NO x and SO2 with O3 quantitative oxidation[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3570-3576. | |
14 | Ji R J , Wang J , Xu W Q , et al . Study on the key factors of NO oxidation using O3: the oxidation product composition and oxidation selectivity[J]. Industrial & Engineering Chemistry Research, 2018, 57: 14440-14447. |
15 | Mok Y S , Lee H J . Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption–reduction technique[J]. Fuel Processing Technology, 2006, 87(7): 591-597. |
16 | 王智化, 周俊虎, 魏林生, 等 . 用臭氧氧化技术同时脱除锅炉烟气中NO x 及SO2的试验研究[J]. 中国电机工程学报, 2007, 27(11): 1-5. |
Wang Z H , Zhou J H , Wei L S , et al . Experimental research for the simultaneous removal of NO x and SO2 in flue gas by O3 [J]. Proceedings of the CSEE, 2007, 27(11): 1-5. | |
17 | Wang Z H , Zhou J H , Zhu Y Q , et al . Simultaneous removal of NO x , SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results[J]. Fuel Processing Technology, 2007, 88(8): 817-823. |
18 | Sun C L , Zhao N , Zhuang Z K , et al . Mechanisms and reaction pathways for simultaneous oxidation of NO x and SO2 by ozone determined by in situ IR measurements[J]. Journal of Hazardous Materials, 2014, 274: 376-383. |
19 | Wang Z H , Zhou J H , Fan J R , et al . Direct numerical simulation of ozone injection technology for NO x control in flue gas[J]. Energy & Fuels, 2006, 20(6): 2432-2438. |
20 | Stamate E , Chen W , Jorgensen L , et al . IR and UV gas absorption measurements during NO x reduction on an industrial natural gas fired power plant[J]. Fuel, 2010, 89(5): 978-985. |
21 | Wang H Q , Zhuang Z K , Sun C L , et al . Numerical evaluation of the effectiveness of NO2 and N2O5 generation during the NO ozonation process[J]. Journal of Environmental Sciences, 2015, 41(3): 51-58. |
22 | 曲江源, 关彦军, 徐文青, 等 . 基于CFD模拟的大差异流量烧结烟气与臭氧混合特性研究[J]. 烧结球团, 2019, 44(1): 63-68. |
Qu J Y , Guan Y J , Xu W Q , et al . Study on mixing behavior of sintering flue gas and ozone with high differential flow based on CFD simulation[J]. Sintering and Pelletizing, 2019, 44(1): 63-68. | |
23 | Skalska K , Miller J S , Ledakowicz S . Kinetics of nitric oxide oxidation[J]. Chemical Papers-Slovak Academy of Sciences, 2010, 64(2): 269-272. |
24 | Habchi C , Lemenand T , Valle D D , et al . Alternating mixing tabs in multifunctional heat exchanger-reactor[J]. Chemical Engineering and Processing, 2010, 49(7): 653-661. |
25 | Barrue H , Karoui A , Sauze N L , et al . Comparison of aerodynamics and mixing mechanisms of three mixers: Oxynator™ gas-gas mixer, KMA and SMI static mixers[J]. Chemical Engineering Journal, 2001, 84(3): 343-354. |
26 | Ghanem A , Lemenand T , Della V D , et al . Static mixers: mechanisms, applications, and characterization methods—a review[J]. Chemical Engineering Research and Design, 2014, 92(2): 205-228. |
27 | Dora J A , Gostomczyk M A , Jakubia k M ,et al. Parametric studies of the effectiveness of NO oxidation process by ozone[J]. Chemical and Process Engineering, 2009, 32(1): 621-634. |
28 | Lei Z G , Wen C P , Chen B H . Optimization of internals for selective catalytic reduction (SCR) for NO removal[J]. Environmental Science & Technology, 2011, 45(8): 3437-3444. |
29 | 李艺凡, 夏国栋, 王军 . 结构参数对布置窄缝和挡板的微混合器内流体流动和混合的影响[J]. 化工学报, 2015, 66(10): 3857-3865. |
Li Y F , Xia G D , Wang J . Effect of structural parameters on fluid flow and mixing characteristics in micromixer with gaps and baffles[J]. CIESC Journal, 2015, 66(10): 3857-3865. | |
30 | 傅鑫亮, 闫志勇 . 仿柳叶形静态混合器的流动及混合特性[J]. 化工学报, 2017, 68(12): 4600-4606. |
Fu X L , Yan Z Y . Flow and mixing characteristics in willow leaf-like static mixer[J]. CIESC Journal, 2017, 68(12): 4600-4606. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[4] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[5] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[6] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[7] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[10] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[11] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[12] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[13] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[14] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[15] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||