化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 158-167.DOI: 10.11949/j.issn.0438-1157.20180805
收稿日期:
2018-07-10
修回日期:
2018-09-25
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
江爱朋
作者简介:
<named-content content-type="corresp-name">徐炜峰</named-content>(1994—),男,硕士研究生,<email>xuweifeng61@163.com</email>|江爱朋(1976—),男,教授,<email>jiangaipeng@163.com</email>
基金资助:
Weifeng XU(),Aipeng JIANG(),Haokun WANG,Enhui JIANG,Qiang DING,Hanhan GAO
Received:
2018-07-10
Revised:
2018-09-25
Online:
2019-03-31
Published:
2019-03-31
Contact:
Aipeng JIANG
摘要:
为了解决控制向量参数化方法逼近精度和计算时间之间的矛盾,提出了一种基于伪Wigner-Ville时频分析的控制向量参数化方法。该方法首先给定较少的网格进行第一次优化迭代,快速获得控制变量的大致轨迹。然后通过伪Wigner-Ville分析得出不同时间网格节点瞬时频率变化对性能指标的影响,籍此对原有网格节点进行重构,包括对时间节点的消除、细化。并且结合变时间节点控制向量参数化方法的思想,将瞬时频率为极大值时对应的时间节点作为待优化参数,与控制变量一同进行求解优化,从而找到准确的最优时间切换点。三个经典的化工反应实例用于验证所提方法,计算结果表明:与传统的控制向量参数化方法和文献结果相比,所提方法可以更有效地重构时间网格,找到准确的时间切换点,不仅计算成本低,而且计算精度更出色。
中图分类号:
徐炜峰, 江爱朋, 王浩坤, 蒋恩辉, 丁强, 高寒寒. 一种基于伪Wigner-Ville分析的动态优化问题网格重构策略[J]. 化工学报, 2019, 70(S1): 158-167.
Weifeng XU, Aipeng JIANG, Haokun WANG, Enhui JIANG, Qiang DING, Hanhan GAO. A grid reconstruction strategy based on pseudo Wigner-Ville analysis for dynamic optimization problem[J]. CIESC Journal, 2019, 70(S1): 158-167.
Method | Iteration | Number of parameters | J max | CPU time/s |
---|---|---|---|---|
UD-CVP | 1 | 32 | 0.7237498 | 130.4 |
UD-CVP | 1 | 150 | 0.7238900 | 2499.6 |
PWV-CVP | 1 | 20 | 0.7234708 | 32.3 |
2 | 32 | 0.7238990 | 89.6 |
表1 实例一测试结果
Table 1 Test results for case 1
Method | Iteration | Number of parameters | J max | CPU time/s |
---|---|---|---|---|
UD-CVP | 1 | 32 | 0.7237498 | 130.4 |
UD-CVP | 1 | 150 | 0.7238900 | 2499.6 |
PWV-CVP | 1 | 20 | 0.7234708 | 32.3 |
2 | 32 | 0.7238990 | 89.6 |
Reference | Method | J max |
---|---|---|
[17] | 组合模式方法CMM | 0.7226 |
[18] | 共轭梯度法CGM | 0.7227 |
[19] | 迭代动态规划IDP | 0.723898 |
本文 | PWV-CVP | 0.723899 |
表2 实例一的不同文献方法结果对比
Reference | Method | J max |
---|---|---|
[17] | 组合模式方法CMM | 0.7226 |
[18] | 共轭梯度法CGM | 0.7227 |
[19] | 迭代动态规划IDP | 0.723898 |
本文 | PWV-CVP | 0.723899 |
Method | Iteration | Number of parameters | J max | CPU time/s |
---|---|---|---|---|
UD-CVP | 1 | 15 | 0.4745314 | 8.09 |
UD-CVP | 1 | 100 | 0.4777024 | 1960.2 |
PWV-CVP | 1 | 20 | 0.4752719 | 18.8 |
2 | 15 | 0.4777120 | 9.7 |
表3 实例二的测试结果
Table 3 Test results for case 2
Method | Iteration | Number of parameters | J max | CPU time/s |
---|---|---|---|---|
UD-CVP | 1 | 15 | 0.4745314 | 8.09 |
UD-CVP | 1 | 100 | 0.4777024 | 1960.2 |
PWV-CVP | 1 | 20 | 0.4752719 | 18.8 |
2 | 15 | 0.4777120 | 9.7 |
Reference | Method | J max |
---|---|---|
[21] | 迭代动态规划IDP | 0.475272 |
[22] | 差分进行算法DE | 0.476827 |
[22] | 三角微分进化算法TDE | 0.476826 |
[23] | 解析方法 | 0.477712 |
本文 | PWV-CVP | 0.477712 |
表4 实例二的不同文献方法结果对比
Table 4 Comparison of results from different literature methods for case 2
Reference | Method | J max |
---|---|---|
[21] | 迭代动态规划IDP | 0.475272 |
[22] | 差分进行算法DE | 0.476827 |
[22] | 三角微分进化算法TDE | 0.476826 |
[23] | 解析方法 | 0.477712 |
本文 | PWV-CVP | 0.477712 |
Method | Iteration | Number of parameters | J max | CPU time/s |
---|---|---|---|---|
UD-CVP | 1 | 86 | 6.151376 | 384.6 |
UD-CVP | 1 | 200 | 6.151546 | 3746.2 |
PWV-CVP | 1 | 40 | 6.150842 | 67.3 |
2 | 86 | 6.151600 | 88.8 |
表5 实例三的测试结果
Table 5 Test results for case 3
Method | Iteration | Number of parameters | J max | CPU time/s |
---|---|---|---|---|
UD-CVP | 1 | 86 | 6.151376 | 384.6 |
UD-CVP | 1 | 200 | 6.151546 | 3746.2 |
PWV-CVP | 1 | 40 | 6.150842 | 67.3 |
2 | 86 | 6.151600 | 88.8 |
Reference | Method | J max |
---|---|---|
[25] | 过滤迭代动态规划FIDP | 6.16 |
[26] | 遗传算法GA | 6.1504 |
[27] | 截断牛顿法TN | 6.15 |
[28] | MJWAT | 6.15 |
[29] | 自适应粒子群优化 | 6.15144 |
[30] | 混合型智能优化方法 | 6.15152 |
本文 | PWV-CVP | 6.15160 |
表6 实例三的不同文献方法结果对比
Table 6 Comparison of results from different literature methods for case 3
Reference | Method | J max |
---|---|---|
[25] | 过滤迭代动态规划FIDP | 6.16 |
[26] | 遗传算法GA | 6.1504 |
[27] | 截断牛顿法TN | 6.15 |
[28] | MJWAT | 6.15 |
[29] | 自适应粒子群优化 | 6.15144 |
[30] | 混合型智能优化方法 | 6.15152 |
本文 | PWV-CVP | 6.15160 |
1 | 彭鑫, 祁荣宾, 杜文莉, 等 . 一种改进的知识进化算法及其在化工动态优化中的应用[J].化工学报, 2012, 63(3): 841-850. |
Peng X , Qi R B , Du W L , et al . An improved knowledge evolution algorithm and its application to chemical process dynamic optimization[J]. CIESC Journal, 2012, 63(3): 841-850. | |
2 | 罗雄麟, 夏车奎, 孙琳 . 有旁路换热网络全周期节能的动态优化控制实现方法[J].化工学报, 2013, 64(4): 1340-1350. |
Luo X L , Xia C K , Sun L . A dynamic optimization control approach of life cycle energy saving for heat exchanger network with bypasses[J]. CIESC Journal, 2013, 64(4): 1340-1350 | |
3 | Zhang B , Chen D , Wu X . Graded optimization strategy and its application to chemical dynamic optimization with fixed boundary[J]. Journal of Chemical Industry & Engineering, 2005, 56(7): 1276-1280. |
4 | Rein L . Optimal control by dynamic programming using systematic reduction in grid size[J]. International Journal of Control, 1990, 51(5): 995-1013. |
5 | Kirk D E . Optimal control theory: an introduction[J]. Positively Aware the Monthly Journal of the Test Positive Aware Network, 2004, 23(2): 13-5. |
6 | Srinivasan B , Palanki S , Bonvin D . Erratum to “Dynamic optimization of batch processes I. Characterization of the nominal solution”: [Computers and Chemical Engineering 27 (2003) 1-26][J]. Computers & Chemical Engineering, 2003, 27(5): 759-760. |
7 | Szymkat M , Korytowski A . Method of monotone structural evolution for control and state constrained optimal control problems[C]// European Control Conference. IEEE, 2015: 294-299. |
8 | Liu P , Li G , Liu X , et al . Novel non-uniform adaptive grid refinement control parameterization approach for biochemical processes optimization[J]. Biochemical Engineering Journal, 2016, 111: 63-74. |
9 | Binder T , Cruse A , Villar C A C , et al . Dynamic optimization using a wavelet based adaptive control vector parameterization strategy[J]. Computers & Chemical Engineering, 2000, 24(2): 1201-1207. |
10 | Schlegel M , Stockmann K , Binder T , et al . Dynamic optimization using adaptive control vector parameterization[J]. Computers & Chemical Engineering, 2005, 29(8): 1731-1751. |
11 | Liu P , Liu X . Empirical mode decomposition-based time grid refinement optimization approach for optimal control problems[J]. Optimization Letters, 2017, 11(7): 1243-1256. |
12 | Liu P , Li G , Liu X , et al . A novel non-uniform control vector parameterization approach with time grid refinement for flight level tracking optimal control problems[J]. ISA Transactions, 2018, 73: 66-78. |
13 | Li G , Liu P , Liu X . A control parameterization approach with variable time nodes for optimal control problems[J]. Asian Journal of Control, 2016, 18(3): 976-984. |
14 | Teo K L , Jennings L S , Lee H W J , et al . The control parameterization enhancing transform for constrained optimal control problems[J]. Journal of the Australian Mathematical Society, 1999, 40(3): 314-335. |
15 | Loxton R C , Teo K L , Rehbock V , et al . Optimal control problems with a continuous inequality constraint on the state and the control ☆[J]. Automatica, 2009, 45(10): 2250-2257. |
16 | Loxton R C , Teo K L , Rehbock V . Optimal control problems with multiple characteristic time points in the objective and constraints ☆[J]. Automatica, 2008, 44(11): 2923-2929. |
17 | Daniel Y C K , Stevens W F . Studies of singular solutions in dynamic optimization (Ⅱ): Optimal singular design of a plug-flow tubular reactor[J]. AIChE Journal, 1971, 17(1): 160-166. |
18 | Reddy K V , Husain A . Computation of optimal control policy with singular subarc[J]. Canadian Journal of Chemical Engineering, 1981, 59(4): 557-559. |
19 | Luus R . Iterative Dynamic Programming[M]. New York: Chapman & Hall/CRC, 2000: 767-767. |
20 | Gunn D J , Thomas W J . Mass transport and chemical reaction in multifunctional catalyst systems[J]. Chemical Engineering Science, 1965, 20(2): 89-100. |
21 | Dadebo S A , Mcauley K B . Dynamic optimization of constrained chemical engineering problems using dynamic programming [J]. Computers & Chemical Engineering, 1995, 19(5): 513-525. |
22 | Angira R , Santosh A . Optimization of dynamic systems: a trigonometric differential evolution approach[J]. Computers & Chemical Engineering, 2007, 31(9): 1055-1063. |
23 | Li G , Liu X . Comments on “optimal use of mixed catalysts for two successive chemical reactions”[J]. Journal of Optimization Theory & Applications, 2015, 165(2): 678-692. |
24 | Lee J , Ramirez W F . Optimal fed‐batch control of induced foreign protein production by recombinant bacteria[J]. Chemical Engineering Science, 1994, 40(5): 899-907. |
25 | Tholudur A , Fredramirez W . Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm[J]. International Journal of Control, 1997, 68(5): 1115-1128. |
26 | Sarkar D , Modak J M . Optimization of fed-batch bioreactors using genetic algorithms: two control variables[J]. Chemical Engineering Science, 2003, 14(11): 1127-1132. |
27 | Balsa C E , Banga J R , Alonso A A , et al . Dynamic optimization of chemical and biochemical processes using restricted second-order information[J]. Computers & Chemical Engineering, 2001, 25(4/5/6): 539-546. |
28 | Shelokar P S , Jayaraman V K . Multicanonical jump walk annealing assisted by tabu for dynamic optimization of chemical engineering processes[J]. European Journal of Operational Research, 2008, 185(3): 1213-1229. |
29 | Zhou Y , Liu X . Control parameterization-based adaptive particle swarm approach for solving chemical dynamic optimization problems[J]. Chemical Engineering & Technology, 2014, 37(4): 692-702. |
30 | Zhang P , Liu X , Ma L . Optimal control vector parameterization approach with a hybrid intelligent algorithm for nonlinear chemical dynamic optimization problems[J]. Chemical Engineering & Technology, 2015, 38(11): 2067-2078. |
[1] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[2] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[3] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[4] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[5] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[12] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[13] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[14] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[15] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||