1 |
Furukawa H, Cordova K E, keeffe M O, et al. The chemistry and applications of metal-organic frameworks [J]. Science, 2013, 341(6149): 1230444.
|
2 |
Howarth A J, Liu Y, Li P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks [J]. Nature Reviews Materials, 2016, 1(3): 15018.
|
3 |
Zhao S, Wang Y, Dong J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution [J]. Nature Energy, 2016, 1(12): 16184.
|
4 |
Huang G, Yang Q, Xu Q, et al. Polydimethylsiloxane coating for a palladium/MOF composite: highly improved catalytic performance by surface hydrophobization [J]. Angewandte Chemie International Edition, 2016, 55(26): 7379-7383.
|
5 |
Zlotea C, Phanon D, Mazaj M, et al. Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs [J]. Dalton Transactions, 2011, 40(18): 4879-4881.
|
6 |
Zhang B, Zhang J, Tan X, et al. MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production [J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16418-16423.
|
7 |
Im J H, Kang E, Yang S J, et al. Simple preparation of anatase titanium dioxide nanoparticles by heating titanium-organic frameworks [J]. Bulletin of the Korean Chemical Society, 2014, 35(8): 2477-2480.
|
8 |
Ao D, Zhang J, Liu H. Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti) [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 524-533.
|
9 |
Fu Y, Sun L, Yang H, et al. Visible-light-induced aerobic photocatalytic oxidation of aromatic alcohols to aldehydes over Ni-doped NH2-MIL-125(Ti) [J]. Applied Catalysis B: Environmental, 2016, 187: 212-217.
|
10 |
Han Y, Han L, Zhang L, et al. Ultrasonic synthesis of highly dispersed Au nanoparticles supported on Ti-based metal-organic frameworks for electrocatalytic oxidation of hydrazine [J]. Journal of Materials Chemistry A, 2015, 3(28): 14669-14674.
|
11 |
Horiuchi Y, Toyao T, Saito M, et al. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(Ⅳ) metal-organic framework [J]. The Journal of Physical Chemistry C, 2012, 116(39): 20848-20853.
|
12 |
Hou C, Xu Q, Wang Y, et al. Synthesis of Pt@NH2-MIL-125(Ti) as a photocathode material for photoelectrochemical hydrogen production [J]. RSC Advances, 2013, 3(43): 19820-19823.
|
13 |
Isaka Y, Kondo Y, Kawase Y, et al. Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles [J]. Chemical Communications, 2018, 54(67): 9270-9273.
|
14 |
Khaletskaya K, Pougin A, Medishetty R, et al. Fabrication of gold/titania photocatalyst for CO2 reduction based on pyrolytic conversion of the metal-organic framework NH2-MIL-125(Ti) loaded with gold nanoparticles [J]. Chemistry of Materials, 2015, 27(21): 7248-7257.
|
15 |
Nasalevich M A, Becker R, Ramos-Fernandez E V, et al. Co@NH2-MIL-125(Ti): cobaloxime-derived metal-organic framework-based composite for light-driven H2 production [J]. Energy & Environmental Science, 2015, 8(1): 364-375.
|
16 |
Puthiaraj P, Ahn W S. Highly active palladium nanoparticles immobilized on NH2-MIL-125 as efficient and recyclable catalysts for Suzuki-Miyaura cross coupling reaction [J]. Catalysis Communications, 2015, 65: 91-95.
|
17 |
Sun D, Liu W, Fu Y, et al. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH2-MIL-125(Ti) (M=Pt and Au) [J]. Chemistry, 2014, 20(16): 4780-4788.
|
18 |
Wang M, Yang L, Hu B, et al. A novel electrochemical sensor based on Cu3P@NH2-MIL-125(Ti) nanocomposite for efficient electrocatalytic oxidation and sensitive detection of hydrazine [J]. Applied Surface Science, 2018, 445: 123-132.
|
19 |
Wang M, Yang L, Yuan J, et al. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(Ⅵ) reduction and rhodamine B degradation under visible light [J]. RSC Advances, 2018, 8(22): 12459-12470.
|
20 |
Wu Z, Huang X, Zheng H, et al. Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light [J]. Applied Catalysis B: Environmental, 2018, 224: 479-487.
|
21 |
Nasalevich M A, Goesten M G, Savenije T J, et al. Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis [J]. Chemical Communications, 2013, 49(90): 10575-10577.
|
22 |
Smalley A P, Reid D G, Tan J C, et al. Alternative synthetic methodology for amide formation in the post-synthetic modification of Ti-MIL125-NH2 [J]. CrystEngComm, 2013, 15(45): 9368-9371.
|
23 |
Fu Y, Sun D, Chen Y, et al. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction [J]. Angewandte Chemie International Edition, 2012, 51(14): 3420-3423.
|
24 |
Kim S N, Kim J, Kim H Y, et al. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125 [J]. Catalysis Today, 2013, 204: 85-93.
|
25 |
Sun Y, Hu S, Song C, et al. Two-dimensional transition metal dichalcogenides as metal sources of metal-organic frameworks [J]. Chemical Communications, 2018, 54(29): 3664-3667.
|
26 |
Wang H, Yuan X, Wu Y, et al. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2015, 286: 187-194.
|
27 |
Zhang Y, Chen Y, Zhang Y, et al. A novel humidity sensor based on NH2-MIL-125 (Ti) metal organic framework with high responsiveness [J]. Journal of Nanoparticle Research, 2013, 15(10): 2014.
|
28 |
Zhu J, Li P Z, Guo W, et al. Titanium-based metal-organic frameworks for photocatalytic applications [J]. Coordination Chemistry Reviews, 2018, 359: 80-101.
|
29 |
She H, Zhou H, Li L, et al. Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11939-11948.
|
30 |
Tan L L, Ong W J, Chai S P, et al. Band gap engineered, oxygen-rich TiO2 for visible light induced photocatalytic reduction of CO2 [J]. Chemical Communications, 2014, 50(52): 6923-6926.
|