化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1018-1025.DOI: 10.11949/0438-1157.20190586
收稿日期:
2019-05-29
修回日期:
2019-10-13
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
周年勇
作者简介:
周年勇(1986—),男,博士,讲师, 基金资助:
Nianyong ZHOU(),Muhao XU,Hao FENG,Feng DUAN,Qingrong WANG,Haifei CHEN,Qiang GUO
Received:
2019-05-29
Revised:
2019-10-13
Online:
2020-03-05
Published:
2020-03-05
Contact:
Nianyong ZHOU
摘要:
搭建了闭式喷雾冷却实验台,实验研究了喷雾冷却的瞬态传热过程,获得了准确描述其传热过程的实验曲线,分析了冷却初始温度、加热功率及工质类型对瞬态传热过程的影响。研究表明:对于喷雾冷却的瞬态传热过程,其表面温度变化趋势可分为急速下降、持续升高、二段下降3类。初始表面温度在经历启动初期增强效应后,若小于莱登弗罗斯特点(LFP)对应的温度Tf,则表面温度不断下降,在核态沸腾区实现热平衡;反之,表面温度升高,在膜态沸腾区实现热平衡;恒定加热功率的大小决定了表面温度变化速率,随着恒定加热功率的增大,表面温度下降或者上升的速率加快;同等条件下,对于不同类型介质,喷嘴入口压力及饱和温度越高,其Tf也越高。
中图分类号:
周年勇, 徐慕豪, 冯浩, 段锋, 王庆荣, 陈海飞, 郭强. 闭式喷雾冷却的瞬态传热过程研究[J]. 化工学报, 2020, 71(3): 1018-1025.
Nianyong ZHOU, Muhao XU, Hao FENG, Feng DUAN, Qingrong WANG, Haifei CHEN, Qiang GUO. Study on transient heat transfer process of spray cooling with closed-loop[J]. CIESC Journal, 2020, 71(3): 1018-1025.
测量数据 | 测量仪器 | 量程 | 精度 |
---|---|---|---|
喷雾腔温度 | PT100铂电阻 | -50~150℃ | ±0.15°C |
加热块柱体温度 | K型针式热电偶 | 0~800℃ | ±0.004|t| |
喷嘴进口压力 | 压力传感器 | 0~1.6 MPa | ±0.25%FS |
喷雾流量 | 液体涡轮流量计 | 0~10 L/min | ±1% |
表1 测量仪器及其精度
Table 1 Measuring instruments and precision
测量数据 | 测量仪器 | 量程 | 精度 |
---|---|---|---|
喷雾腔温度 | PT100铂电阻 | -50~150℃ | ±0.15°C |
加热块柱体温度 | K型针式热电偶 | 0~800℃ | ±0.004|t| |
喷嘴进口压力 | 压力传感器 | 0~1.6 MPa | ±0.25%FS |
喷雾流量 | 液体涡轮流量计 | 0~10 L/min | ±1% |
1 | Cheng W L, Zhang W W, Chen H, et al. Spray cooling and flash evaporation cooling: the current development and application [J]. Renewable & Sustainable Energy Reviews, 2016, 55: 614-628. |
2 | Cheng W L, Liu Q N, Zhao R, et al. Experimental investigation of parameters effect on heat transfer of spray cooling [J]. Heat and Mass Transfer, 2010, 46(8): 911-921. |
3 | Liang G, Mudawar I. Review of spray cooling (1): Single-phase and nucleate boiling regimes, and critical heat flux [J]. International Journal of Heat and Mass Transfer, 2017, 115: 1174-1205. |
4 | Cabrera E. Heat flux correlation for spray cooling in the nucleate boiling regime [J]. Experimental Heat Transfer, 2003, 16(1): 19-44. |
5 | Rybicki J R, Mudawar I. Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays [J]. International Journal of Heat and Mass Transfer, 2006, 49(1/2): 5-16. |
6 | 王锐, 陈斌, 王嘉丰, 等. R1234yf瞬态喷雾冷却及过热度影响的实验研究[J]. 化工学报, 2018, 69(2): 595-601. |
Wang R, Chen B, Wang J F, et al. Experimental research of R1234yf transient spray cooling and influence of cryogen superheat degree [J]. CIESC Journal, 2018, 69 (2): 595-601. | |
7 | 曹磊, 陈剑楠, 姜培学, 等. 基于制冷循环的闭式喷雾冷却系统实验研究[J]. 工程热物理学报, 2018, 39(2): 373-378. |
Cao L, Chen J N, Jiang P X, et al. Experimental investigation of spray cooling system in a closed loop based on refrigeration cycle [J]. Journal of Engineering Thermophysics, 2018, 39 (2): 373-378. | |
8 | 王锐, 杨涛, 周致富, 等. 喷嘴类型对制冷剂喷雾雾化特性及表面传热的影响研究[J]. 工程热物理学报, 2017, 38(12): 2646-2650. |
Wang R, Yang T, Zhou Z F, et al. Effects of nozzle type on spray characteristics and surface heat transfer in cryogen spray cooling [J]. Journal of Engineering Thermophysics, 2017, 38 (12): 2646-2650. | |
9 | 侯燕. 多喷嘴喷雾冷却实验研究与数值模拟[D]. 北京: 中国科学院大学, 2014. |
Hou Y. Experimental study and numerical simulation of multi nozzle spray cooling [D]. Beijing: University of Chinese Academy of Sciences, 2014. | |
10 | Fukuda H, Nakata N, Kijima H, et al. Effects of surface conditions on spray cooling characteristics[J]. ISIJ International, 2016, 56(4): 628-636. |
11 | Wei Z, Wang Z, Xu M. Heat transfer characteristics in closed-loop spray cooling of micro-structured surfaces[J]. High Power Laser & Particle Beams, 2012, 24(9): 2053-2058. |
12 | Zhou N, Chen F, Cao Y, et al. Experimental investigation on the performance of a water spray cooling system [J]. Applied Thermal Engineering, 2017, 112: 1117-1128. |
13 | Visaria M, Mudawar I. Application of two-phase spray cooling for thermal management of electronic devices [J]. IEEE Transactions on Components and Packaging Technologies, 2009, 32(4): 784-793. |
14 | Cui Q, Chandra S, McCahan S. The effect of dissolving salts in water sprays used for quenching a hot surface(2): Spray cooling [J]. Journal of Heat Transfer, 2003, 125(2): 333-338. |
15 | Wang Y, Zhou N, Yang Z, et al. Experimental investigation of aircraft spray cooling system with different heating surfaces and different additives [J]. Applied Thermal Engineering, 2016, 103: 510-521. |
16 | 刘红, 何阳, 蔡畅, 等. 乙醇和正丁醇添加剂对喷雾冷却的影响[J]. 化工学报, 2019, 70(1): 65-71. |
Liu H, He Y, Cai C, et al. Influence of ethanol and n-butanol additives on spray cooling [J]. CIESC Journal, 2019, 70 (1): 65-71. | |
17 | 余宁, 潘健生, 顾剑锋, 等. 瞬态非傅里叶导热效应判据的探讨[J]. 激光技术, 2002, 26(2): 156-158. |
Yu N, Pan J S, Gu J F, et al. Discussions on the criterion of transient non-Fourier thermal conductivity effect [J]. Laser Technology, 2002, 26(2): 156-158. | |
18 | 周致富, 徐腾宇, 赵曦, 等. 喷雾冷却表面瞬态热通量计算方法研究[J]. 工程热物理学报, 2016, 37(11): 2452-2457. |
Zhou Z F, Xu T Y, Zhao X, et al. Methodology for prediction of time-varying heat flux during pulsed spray cooling [J]. Journal of Engineering Thermophysics, 2016, 37(11): 2452-2457. | |
19 | Li D, Chen B, Wu W J, et al. Multi-scale modeling of tissue freezing during cryogen spray cooling with R134a, R407c and R404a[J]. Applied Thermal Engineering, 2014, 73(2): 1489-1500. |
20 | 田加猛, 陈斌, 李东, 等. 制冷剂瞬态喷雾冷却表面传热特性[J]. 化工学报, 2016, 67(10): 4064-4071. |
Tian J M, Chen B, Li D, et al. Surface heat transfer characteristics during transient cryogen spray cooling [J]. CIESC Journal, 2016, 67 (10): 4064-4071. | |
21 | Peng C, Xu X, Liang X. Experimental study on temperature variation patterns and deterioration of spray cooling with R21[J]. International Journal of Heat & Mass Transfer, 2018, 121: 1159-1167. |
22 | Hsieh S S, Fan T C, Tsai H H. Spray cooling characteristics of water and R-134a(Ⅱ): transient cooling[J]. International Journal of Heat and Mass Transfer, 2004, 47(26): 5713-5724. |
23 | Baysinger K M, Yerkes K L, Michalak T E, et al. Design of a microgravity spray cooling experiment [C]//Proceedings of the 42nd AIAA Aerospace Science Meeting and Exhibit. Reno, NV, USA, 2004. |
24 | Cader T, Westra L J, Eden R C. Spray cooling thermal management for increased device reliability [J]. IEEE Transactions on Device and Materials Reliability, 2005, 4(4): 605-613. |
25 | Zhou Z, Lin Y, Tang H, et al. Heat transfer enhancement due to surface modification in the close-loop R410A flash evaporation spray cooling[J]. International Journal of Heat and Mass Transfer, 2019, 139: 1047-1055. |
26 | Lin Y, Zhou Z, Fang Y, et al. Heat transfer performance and optimization of a close-loop R410A flash evaporation spray cooling[J]. Applied Thermal Engineering, 2019, 159: 1359-4311. |
27 | Wang J, Li Y, Li J, et al. Enhanced heat transfer by an original ‘immersed spray cooling system’ integrated with an ejector[J]. Energy, 2018, 158: 512-523. |
28 | 赵宇新, 赵霄, 张博, 等. 瞬态喷雾冷却中使用导热逆问题求解热边界条件[J]. 大连理工大学学报, 2019, 59(4): 359-365. |
Zhao Y X, Zhao X, Zhang B, et al. Solution of thermal boundary conditions using inverse heat conduction problem in intermittent spray cooling [J]. Journal of Dalian University of Technology, 2019, 59 (4): 359-365. | |
29 | 文哲希, 吕硕, 何雅玲. 预测喷雾冷却热通量反问题的粒子群算法研究[J]. 工程热物理学报, 2013, 34(8): 1506-1510. |
Wen Z X, Lyu S, He Y L. Investigation of particle swarm optimization algorithm in inverse problems of estimating spray cooling heat flux [J]. Journal of Engineering Thermophysics, 2013, 34(8): 1506-1510. | |
30 | 刘俊峰, 陈斌, 王国祥, 等. 水射流冷却过程中表面热通量的预测[J]. 工程热物理学报, 2010, 31(1): 110-112. |
Liu J F, Chen B, Wang G X, et al. Prediction of surface heat flux in a water jet cooling process [J]. Journal of Engineering Thermophysics, 2010, 31 (1): 110-112. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[8] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||