化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1026-1034.DOI: 10.11949/0438-1157.20190646
收稿日期:
2019-06-10
修回日期:
2019-10-22
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
戴源德
基金资助:
Lele WANG,Yuande DAI(),Siyao TIAN,Qinhan LIN
Received:
2019-06-10
Revised:
2019-10-22
Online:
2020-03-05
Published:
2020-03-05
Contact:
Yuande DAI
摘要:
实验研究小管径水平微肋管内R290的两相流沸腾传热特性,分别在内径为4、6 mm,有效长度为900 mm的紫铜管内,得到R290在质量流量密度100~250 kg·m-2·s-1、饱和温度7~11℃、热通量13~24 kW·m-2以及干度0.1~0.9范围内的沸腾传热系数;分析了质量流量密度、饱和温度、热通量、管型以及干度对R290沸腾传热系数及临界干度的影响。结果发现:沸腾传热系数随质量流量密度、饱和温度的增大而增加;随着热通量的增大,传热系数出现先增后减的现象;热通量越高,临界干度越小;微肋管相比于光滑管临界干度更大;且随着R290的沸腾汽化,干度逐渐增大并出现干涸现象,导致沸腾传热系数先增至一极值后降低。分别采用6种常用的沸腾传热关联式预测R290的沸腾传热系数,对比实验结果得出Fang等和Choi等的预测精度比较高。
中图分类号:
王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
Lele WANG, Yuande DAI, Siyao TIAN, Qinhan LIN. Experimental investigation on characteristics of R290 boiling heat transfer in horizontal micro-fin tubes with small diameter[J]. CIESC Journal, 2020, 71(3): 1026-1034.
测量参数 | 测量仪表及型号 | 测量范围 | 误差 |
---|---|---|---|
质量流量mref/(kg·h-1) | DMF-1-1A/DX 科氏质量流量计 | 0~40 | ±0.2% |
体积流量Vw/(L·min-1) | LDY-S 电磁流量计 | 0.05~3.50 | ±0.5% |
工质温度tsat/℃ | Pt100 电阻温度计 | -50~200 | ±0.1℃ |
内管外壁温two/℃ | TT-T-30-SLE T型热电偶 | -200~150 | ±0.1℃ |
压力p/MPa | Trafan8251 压力传感器 | 0~6 | ±0.3% |
表1 实验测量仪器及参数
Table 1 Measuring and test instruments
测量参数 | 测量仪表及型号 | 测量范围 | 误差 |
---|---|---|---|
质量流量mref/(kg·h-1) | DMF-1-1A/DX 科氏质量流量计 | 0~40 | ±0.2% |
体积流量Vw/(L·min-1) | LDY-S 电磁流量计 | 0.05~3.50 | ±0.5% |
工质温度tsat/℃ | Pt100 电阻温度计 | -50~200 | ±0.1℃ |
内管外壁温two/℃ | TT-T-30-SLE T型热电偶 | -200~150 | ±0.1℃ |
压力p/MPa | Trafan8251 压力传感器 | 0~6 | ±0.3% |
外径do/mm | 内径di/mm | 总壁厚δ/mm | 底壁厚δw/mm | 齿顶高度Hf/mm | 齿顶角α/(°) | 螺纹条数n | 螺旋角β/(°) |
---|---|---|---|---|---|---|---|
5.00 | 4.00±0.03 | 0.50 | 0.35±0.03 | 0.15±0.02 | 40±5 | 65 | 18±2 |
7.00 | 6.00±0.03 | 0.50 | 0.35±0.03 | 0.15±0.02 | 40±5 | 65 | 18±2 |
表2 微肋管结构参数
Table 2 Structural parameters of inner tube
外径do/mm | 内径di/mm | 总壁厚δ/mm | 底壁厚δw/mm | 齿顶高度Hf/mm | 齿顶角α/(°) | 螺纹条数n | 螺旋角β/(°) |
---|---|---|---|---|---|---|---|
5.00 | 4.00±0.03 | 0.50 | 0.35±0.03 | 0.15±0.02 | 40±5 | 65 | 18±2 |
7.00 | 6.00±0.03 | 0.50 | 0.35±0.03 | 0.15±0.02 | 40±5 | 65 | 18±2 |
测试编号 | 体积流量/(L·min-1) | 进口温度/℃ | 出口温度/℃ | 比热容/(kJ·kg-1·℃-1) | 密度/(kg·m-3) | 漏热率/% | |
---|---|---|---|---|---|---|---|
1 | 热水 | 1.673 | 52.4 | 43.5 | 4.181 | 988.91 | 2.82 |
冷水 | 2.210 | 23.7 | 30.2 | 4.181 | 996.49 | ||
2 | 热水 | 1.552 | 53.2 | 43.3 | 4.181 | 988.78 | 2.30 |
冷水 | 2.224 | 24.0 | 30.7 | 4.181 | 996.38 | ||
3 | 热水 | 1.486 | 52.8 | 43.9 | 4.181 | 988.73 | 2.25 |
冷水 | 2.103 | 23.4 | 29.5 | 4.181 | 996.62 |
表3 热平衡测试数据
Table 3 Data of heat-balance test
测试编号 | 体积流量/(L·min-1) | 进口温度/℃ | 出口温度/℃ | 比热容/(kJ·kg-1·℃-1) | 密度/(kg·m-3) | 漏热率/% | |
---|---|---|---|---|---|---|---|
1 | 热水 | 1.673 | 52.4 | 43.5 | 4.181 | 988.91 | 2.82 |
冷水 | 2.210 | 23.7 | 30.2 | 4.181 | 996.49 | ||
2 | 热水 | 1.552 | 53.2 | 43.3 | 4.181 | 988.78 | 2.30 |
冷水 | 2.224 | 24.0 | 30.7 | 4.181 | 996.38 | ||
3 | 热水 | 1.486 | 52.8 | 43.9 | 4.181 | 988.73 | 2.25 |
冷水 | 2.103 | 23.4 | 29.5 | 4.181 | 996.62 |
图8 沸腾传热系数实验值与预测值对比[27,28,29,30,31,32]
Fig.8 Comparison of experimental value with prediction values of boiling heat transfer coefficients[27,28,29,30,31,32]
Correlations | eR/% | eA /% | ω±20% | ω±30% |
---|---|---|---|---|
Choiet al.[ | -7.37 | 17.59 | 51.88 | 71.87 |
Fanget al.[ | -3.11 | 5.90 | 98.44 | 100 |
Pamitranet al.[ | 37.64 | 39.76 | 45.31 | 56.25 |
Bertschet al.[ | 23.59 | 27.22 | 46.87 | 70.31 |
Cavalliniet al.[ | 23.52 | 37.06 | 31.25 | 46.87 |
Yunet al.[ | -16.85 | 32.83 | 25.03 | 36.69 |
表4 关联式的预测偏差
Table 4 Errors of correlations,prediction
Correlations | eR/% | eA /% | ω±20% | ω±30% |
---|---|---|---|---|
Choiet al.[ | -7.37 | 17.59 | 51.88 | 71.87 |
Fanget al.[ | -3.11 | 5.90 | 98.44 | 100 |
Pamitranet al.[ | 37.64 | 39.76 | 45.31 | 56.25 |
Bertschet al.[ | 23.59 | 27.22 | 46.87 | 70.31 |
Cavalliniet al.[ | 23.52 | 37.06 | 31.25 | 46.87 |
Yunet al.[ | -16.85 | 32.83 | 25.03 | 36.69 |
1 | Choudhari C S,Sapali S N.Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems[J].Energy Procedia,2017,109:346-352. |
2 | Parikshit A L,Choudhari C S.Perspective of environmental friendly refrigeration propane(R290)[J].International Journal of Innovative Research in Science and Engineering,2016,2(3):748-753. |
3 | Liang J R,Li T X.Detailed dynamic refrigerant migration characteristics in room air-conditioner with R290[J].International Journal of Refrigeration,2017,88:108-116. |
4 | Teddy I O,Oluseyi O A.Thermal performance and energy consumption analyses of R290 and R22 refrigerants in air-conditioning system[J].Materials Science and Engineering,2018,43:1-9. |
5 | Vishakha S J,Ashok J K.Experimental performance study of R290 as an alternative to R22 refrigerant in a window air conditioner[J].Materials Science and Engineering,2018,13:1-8. |
6 | Hui L,Hong X.Study on Performances of refrigeration-type compressed-air dryers using environmentally-friendly refrigerants R717, R290 and R600a[J].Applied Mechanics and Materials,2014,672:1708-1711. |
7 | Kashif N,Bo S,Ahmed E,et al.R290(Propane) and R600a(isobutane) as natural refrigerants for residential heat pump water heaters[J].Applied Thermal Engineering,2017,127:870-883. |
8 | Zou S K,Dai Y D,He G G.Studies on phase change heat transfer of R290 and its refrigerant mixtures in horizontal tube[J].Chemical Industry and Engineering Progress,2016,35(11):3413-3420. |
9 | Zhou W J,Gan Z H.A potential approach for reducing the R290 charge in air conditioners and heat pumps[J].International Journal of Refrigeration,2019,20:1-14. |
10 | Nguyen B C,Pham Q V,Kwang-I1 C, et al.Boiling heat transfer of R32, CO2 and R290 inside horizontal minichannel[J].Energy Procedia,2017,105:4822-4827. |
11 | 张慧晨,刘建华,徐小进,等.微细管内R290流动沸腾换热与干涸特性研究[J].能源工程,2016,6:1-5. |
Zhang H C,Liu J H,Xu X J,et al.Experimental study of the heat transfer and dryout for R290 flow boiling in micro-tubes[J].Energy Engineering,2016,6:1-5. | |
12 | Jeferson D O,Jacqueline B C,Julio C P.Experimental investigation on flow boiling pressure drop of R290 and R600a in a horizontal small tube[J].International Journal of Refrigeration,2017,84:165-180. |
13 | 周小清,柳建华,徐小进,等.微细通道内R290流动沸腾换热特性实验研究[J].热能动力工程,2017,32(4):38-42. |
Zhou X Q,Liu J H,Xu X J.Experimental study on flow boiling heat transfer characteristics of R290 in microchannel[J].Journal of Engineering for Thermal Energy and Power,2017,32(4):38-42. | |
14 | Jiong T O,Pamitran A S,Kwang I C,et al.Experimental investigation on two-phase flow boiling heat transfer of five refrigerants in horizontal small tubes of 0.5, 1.5 and 3.0 mm inner diameters[J].International Journal of Heat and Mass Transfer,2011,54:2080-2088. |
15 | Lillo G R,Mastrullo A,Mauro W,et al.Flow boiling heat transfer, dry-out vapor quality and pressure drop of propane(R290): experimental and assessment of predictive methods[J].International Journal of Heat and Mass Transfer,2018,126:1236-1252. |
16 | Zan W,Bengt S D,Vishwas V W,et al.Heat transfer correlations for single-phase flow, condensation, and boiling in microfin tubes[J].Heat Transfer Engineering,2015,36:582-595. |
17 | Zou X,Gong M Q,Chen G F,et al.Experimental study on saturated flow boiling heat transfer of RE170/R290 mixtures in a horizontal tube[J].International Journal of Refrigeration,2010,33:371-380. |
18 | Li K Q,He G G,Jiang J K,et al.Flowing boiling heat transfer characteristics and pressure drop of R290/oil solution in smooth horizontal tubes[J].International Journal of Heat and Mass Transfer,2018,119:777-790. |
19 | He G G,Liu F,Cai D H,et al.Experimental investigation on flow boiling heat transfer performance of a new near azeotropic refrigerant mixture R290/R32 in horizontal tubes[J].International Journal of Heat and Mass Transfer,2016,102:561-573. |
20 | Zou X,Gong M Q,Chen G F,et al.Experimental study on saturated flow boiling heat transfer of R290/R152a binary mixtures in a horizontal tube[J].Energy Power Engineering,2010,4(4):527-534. |
21 | Jin S J,Wang X C,Ma X L,et al.Study on the performance of small tube diameter R290 fin-tube evaporator[J].Procedia Engineering,2017,205:1578-1583. |
22 | 戴源德,林秦汉,邹思凯,等.R290在水平光滑管内的沸腾换热[J].化工学报,2017,68(9):3420-3426. |
Dai Y D,Lin Q H,Zou S K,et al.Boiling heat transfer performance of R290 in smooth horizontal tubes[J],CIESC Journal,2017,68(9):3420-3426. | |
23 | 杨世铭,陶文铨.传热学 [M].4版. 北京:高等教育出版社,2006:203. |
Yang S M,Tao W Q.Heat Transfer[M].4th ed.Beijing:Higher Education Press,2006:203. | |
24 | 杨春信,吴玉庭,袁修干,等.核态池沸腾中气泡生长和脱离的动力学特征——气泡的脱离直径与脱离频率[J].热能动力工程,1999,14(5):330-333. |
Yang C X,Wu Y T,Yuan X G,et al.Dynamic characteristics of bubble growth and departure in nucleate boiling—bubble departure diameter and frequency[J].Journal of Engineering for Thermal Energy and Power,1999,14(5):330-333. | |
25 | 欧阳新萍,陈静竹,李泰宇.3种管内强化管沸腾换热性能对比[J].化工学报,2015,66(6):2076-2081. |
Ouyang X P,Chen J Z,Li T Y.Boiling heat transfer performance in three internal enhanced tubes[J].CIESC Journal,2015,66(6):2076-2081. | |
26 | 司少娟,欧阳新萍,张连杰,等.T型沸腾强化换热管传热性能的实验研究[J].热能动力工程,2011,26(4):410-414. |
Si S J,Ouyang X P,Zhang L J.Experimental study of the heat transfer performance of a T-shaped fin boiling intensified heat exchange pipe[J].Journal of Engineering for Thermal Energy and Power,2011,26(4):410-414. | |
27 | Choi K I,Pamitran A S,Oh J T,et al.Pressure drop and heat transfer during two-phase flow vaporization of propane in horizontal smooth minichannels[J].International Journal of Refrigeration,2009,32(5):837-845. |
28 | Fang X D,Wu Q,Yuan Y L.A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions[J].International Journal of Heat and Mass Transfer,2016,107:972-981. |
29 | Pamitran A S,Choi K I,Oh J T,et al.Two-phase flow heat transfer of propane vaporization in horizontal minichannels[J].Journal of Mechanical Science and Technology,2009,23:599-606. |
30 | Bertsch S S,Groll E A,Garimella S V.A composite heat transfer correlation for saturated flow boiling in small channels[J].CTRC Research Publication,2009,52(7):2110-2118. |
31 | Cavallini A,Del C D,Doretti L,et al.Refrigerant vaporization inside enhanced tubes: a heat transfer model[J].Heat and Technology,1999,17(2):29-36. |
32 | Yun R,Kim Y C,Seo K J,et al.A generalized correlation for evaporation heat transfer of refrigerants in micro-fin tubes[J].International Journal of Heat and Mass Transfer,2002,45:2003-2010. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[8] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[9] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[10] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[11] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[12] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[13] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[14] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[15] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||