化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1469-1481.DOI: 10.11949/0438-1157.20190808
收稿日期:
2019-07-10
修回日期:
2019-10-09
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
亢银虎
基金资助:
Yinhu KANG1(),Pengyuan ZHANG2,Xiaofeng LU1
Received:
2019-07-10
Revised:
2019-10-09
Online:
2020-04-05
Published:
2020-04-05
Contact:
Yinhu KANG
摘要:
采用详细的化学反应机理和组分输运模型,对二甲醚(DME)微重力球形扩散火焰在热焰与冷焰条件下的振荡熄火机理开展数值研究。结果表明,在微重力条件下可以建立稳定自持的冷焰,而且冷焰反应可以显著拓展熄火的可燃极限。在热焰与冷焰的稳态熄火点之前均观察到了振荡熄火过程。DME热焰的振荡熄火受单个振荡模式所控制,且振荡频率(约1 Hz)与环境氧含量无关。而冷焰的振荡熄灭受两个具有不同频率的双振荡模式所控制,在靠近熄火极限时高频振荡模式的振荡周期急剧增加。此外,高频与低频振荡模式之间存在着强烈耦合作用,导致冷焰的振荡熄火过程更加复杂。基于敏感性分析的结果表明,热焰的振荡熄火受小分子所参与的高温吸热/放热以及链分支/断裂反应之间的竞争关系所控制,而冷焰的振荡熄火受负温度系数机制下低温链分支与断裂反应之间的竞争关系所控制。
中图分类号:
亢银虎, 张弋, 张朋远, 卢啸风. 二甲醚球形扩散火焰的振荡熄火动力学机理研究[J]. 化工学报, 2020, 71(4): 1469-1481.
Yinhu KANG, Pengyuan ZHANG, Xiaofeng LU. Study on oscillatory extinction dynamics mechanism of dimethyl ether spherical diffusion flame[J]. CIESC Journal, 2020, 71(4): 1469-1481.
图1 经典的“S曲线”以及H2在熄火极限附近的燃烧产热速率变化特性(TE是熄火点E的温度)
Fig.1 Canonical S-curve and near-extinction heat release behavior of H2 (TE is temperature at extinction point E)
图2 球形扩散火焰示意图以及GRAD=CURVE=0.1(网格个数486)、GRAD=CURVE=0.2时(网格个数303)XO2*=42.1%条件下的火焰仿真结果对比(GRAD和CURV分别代表流场中标量的梯度与曲率)
Fig.2 Diagram of spherical diffusion flame, and comparison of predicted results using GRAD=CURVE=0.1 (486 grids) and GRAD=CURVE=0.2 (303 grids) for flame at XO2*=42.1%
图4 环境成分分别为42.1%O2/57.9%He与18.9%O2/81.1%He时的热焰和冷焰的火焰结构
Fig.4 Flame structures of hot flame at ambient composition 42.1%O2/57.9%He and cool flame at 18.9%O2/81.1%He, respectively
图5 不同环境氧气摩尔分数条件下的热焰温度场经摄动之后最高温度的瞬态响应过程(δT是温度场所受到的扰动比例)
Fig.5 Response of maximum temperature upon a temperature perturbation for hot flames at different ambient oxygen mole fractions (δT is temperature perturbation ratio)
图6 不同环境氧气摩尔分数条件下的冷焰振荡熄火过程以及相应的频谱分析图
Fig.6 Oscillatory extinction process of cool flames at different ambient oxygen mole fractions as well as spectral analyses
图8 关键反应的速率常数与关键标量的输运参数乘以某倍数之后所得的热焰分支图
Fig.8 Response of hot flame branch after key reaction rate constants and transport parameters are multiplied by a factor
图9 关键反应的速率常数与关键标量的输运参数乘以某倍数之后所得的冷焰分支图
Fig.9 Response of cool flame branch after key reaction rate constants and transport parameters are multiplied by a factor
图10 XO2*=24.02%、δT=+0.3%条件下的热焰振荡熄火过程中关键反应R1、R29、R53、R56、R30、R48的最大反应速率与最高温度之间的相位关系(圆圈表示经摄动之后振荡的起始点,正交虚线的交点表示摄动前的稳态点)
Fig.10 Phase functions of peak temperature and maximum reaction rate for key reactions R1, R29, R53, R56, R30 and R48 during oscillation extinction process of hot flame at XO2*=24.02% and δT=+0.3%
图11 XO2*=6.1%、δT=+1.5%条件下的冷焰振荡熄火过程中,200~250 s期间内,关键反应R240、R264、R273、R274、R272、R44的最大反应速率与最高温度之间的相位关系
Fig.11 Phase functions of peak temperature and maximum reaction rate for key reactions R240, R264, R273, R274, R272, and R44 within 200—250 s of oscillation extinction process for cool flame at XO2*=6.1% and δT=+1.5%
1 | Kang Y H, Lu T F, Lu X F, et al. On predicting the length, width, and volume of the jet diffusion flame [J]. Appl. Therm. Eng., 2016, 94: 799-812. |
2 | Aggarwal S K. Extinction of laminar partially premixed flames [J]. Prog. Energy Combust. Sci., 2009, 35: 528-570. |
3 | Barlow R S, Meares S, Magnotti G, et al. Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets [J]. Combust. Flame, 2015, 162: 3516-3540. |
4 | Li X, Yang H L, Jiang L Q, et al. Stretch extinction characteristics of CH4/CO2versus O2/H2O/CO2 and O2/H2O counterflow non-premixed flames at different oxidizer temperatures [J]. Fuel, 2016, 186: 648-655. |
5 | Christiansen E W, Tse S D, Law C K. A computational study of oscillatory extinction of spherical diffusion flames [J]. Combust. Flame, 2003, 134: 327-337. |
6 | Tang S T, Im H G, Atreya A. A computational study of spherical diffusion flames in microgravity with gas radiation(Ⅱ): Parametric studies of the diluent effects on flame extinction [J]. Combust. Flame, 2010, 157: 127-136. |
7 | Shan R Q, Lu T F. Ignition and extinction in perfectly stirred reactors with detailed chemistry [J]. Combust. Flame, 2012, 159: 2069-2076. |
8 | Yoo S W, Christiansen E W, Law C K. Oscillatory extinction of spherical diffusion flames: micro-buoyancy experiment and computation [J]. Proc. Combust. Inst., 2002, 29: 29-36. |
9 | Dietrich D L, Ross H D, Frante D T, et al. Candle flames in microgravity[C]//4th International Microgravity Combustion Workshop. Cleveland, 1997: 10194. |
10 | Farouk T I, Hicks M C, Dryer F L. Multistage oscillatory “cool flame” behavior for isolated alkane droplet combustion in elevated pressure microgravity condition[J]. Proc. Combust. Inst., 2015, 35: 1701-1708. |
11 | Wang L, Jiang Y, Pan L W, et al. Lagrangian investigation and chemical explosive mode analysis of extinction and re-ignition in H2/CO/N2 syngas non-premixed flame [J]. Int. J. Hydrogen Energy, 2016, 41: 4820-4830. |
12 | Luo Z Y, Yoo C S, Richarson E S, et al. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow [J]. Combust. Flame, 2012, 159: 265-274. |
13 | 亢银虎, 张朋远, 刘葱葱, 等. 基于化学爆炸模式分析方法的乙烯对冲扩散火焰熄火机理[J]. 化工学报, 2019, 70(4): 1644-1651. |
Kang Y H, Zhang P Y, Liu C C, et al. Extinction mechanism of ethylene opposed-flow diffusion flame using chemical explosive mode analysis method[J]. CIESC Journal, 2019, 70(4): 1644-1651. | |
14 | 黄景怀, 李军伟, 陈新建, 等. 同轴管甲烷逆流燃烧器中火焰结构与燃烧稳定性[J]. 化工学报, 2016, 67(9): 3590-3597. |
Huang J H, Li J W, Chen X J, et al. Flame stability and structure of opposed methane / air jet in coaxial tubes [J]. CIESC Journal, 2016, 67(9): 3590-3597. | |
15 | Kang Y H, Wei S, Zhang P Y, et al. Detailed multi-dimensional study on NOx formation and destruction mechanisms in dimethyl ether/air diffusion flame under the moderate or intense low-oxygen dilution (MILD) condition [J]. Energy, 2017, 119: 1195-1211. |
16 | Turner M J L. Rocket and Spacecraft Propulsion [M]. 3rd ed. Berlin: Springer Press, 2009. |
17 | Wang H Y, Bechtold J K, Law C K. Nonlinear oscillations in diffusion flames [J]. Combust. Flame, 2016, 145: 376-389. |
18 | Kooshkbaghi M, Frouzakis C E, Boulouchos K, et al. n-Heptane/air combustion in perfectly stirred reactors: dynamics, bifurcations and dominant reactions at critical conditions [J]. Combust. Flame, 2015, 162: 3166-3179. |
19 | 曾科. 负压下层流预混火焰结构与不稳定性研究 [D]. 长沙: 国防科学技术大学, 2012. |
Zeng K. Study on structure and self-induced instability of laminar premixed flame in low pressure [D]. Changsha: National University of Defense Technology, 2012. | |
20 | Kee R J, Grcar J F, Smooke M D, et al. A Fortran program for modeling steady laminar one-dimensional premixed flames [R]. Report No. SAND85-8240, Sandia National Laboratories, 1985. |
21 | Modest M F. Radiative Heat Transfer [M]. Academic Press, 2003. |
22 | Santa K J, Chao B H, Sunderland P B, et al. Radiative extinction of gaseous spherical diffusion flames in microgravity [J]. Combust. Flame, 2017, 151: 665-675. |
23 | Kee R J, Rupley F M, Miller J A. Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics [R]. Report No. SAND89-8009B, Sandia National Laboratories, 1989. |
24 | Grcar J F. The Twopnt program for boundary value problems [R]. Report No. SAND91-8230, Sandia National Laboratories, 1992. |
25 | Zhao Z W, Chaos M, Kazakov A, et al. Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether [J]. Int. J. Chem. Kine., 2008, 40: 1-18. |
26 | Nishioka M, Law C K, Takeno T. A flame-controlling continuation method for generating S-curve responses with detailed chemistry [J]. Combust. Flame, 1996, 104(3): 328-342. |
27 | Ju Y G, Reuter C B, Won S H. Numerical simulations of premixed cool flames of dimethyl ether/oxygen mixtures [J]. Combust. Flame, 2015, 162: 3580-3588. |
28 | Liang W K, Law C K. Extended flammability limits of n-heptane/air mixtures with cool flames [J]. Combust. Flame, 2017, 185: 75-81. |
29 | Minamoto Y, Chen J H. DNS of a turbulent lifted DME jet flame [J]. Combust. Flame, 2016, 169: 38-50. |
30 | Nayagam V, Dietrich D L, Ferkul P, et al. Can cool flames support quasi-steady alkane droplet burning? [J]. Combust. Flame, 2012, 159: 3583-3588. |
31 | Farouk T I, Dryer F L. On the extinction characteristics of alcohol droplet combustion under microgravity conditions — a numerical study [J]. Combust. Flame, 2012, 159: 3208-3223. |
32 | Kourdis P D, Goussis D A. Glycolysis in saccharomyces cerevisiae: algorithmic exploration of robustness and origin of oscillations [J]. Math. Biosci., 2013, 243: 190-214. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[9] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[12] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[13] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[14] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[15] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||