化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2466-2480.DOI: 10.11949/0438-1157.20200145
收稿日期:
2020-02-17
修回日期:
2020-04-14
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
于乐
作者简介:
田同振(1996—),男,硕士研究生,基金资助:
Tongzhen TIAN(),Nianwu LI,Le YU()
Received:
2020-02-17
Revised:
2020-04-14
Online:
2020-06-05
Published:
2020-06-05
Contact:
Le YU
摘要:
氢能所具有的清洁、高能量密度特点,使其成为一种未来的理想能源。相较于石油、天然气等的热解制氢技术,利用可再生清洁能源进行电催化分解水制氢具有高效和清洁无污染的特点,且获得氢气产物纯度高,具备大规模发展的潜力。而在大规模水电解过程中,电催化剂是不可或缺的元素之一。它能有效地加速电解水在阴阳两极反应的动力学过程。传统的贵金属基催化剂具有良好的电催化析氢、析氧活性,但成本高昂、储量稀缺,从而限制了其规模化地推广及应用。开发新型高效廉价的非贵金属基电催化剂已成为时下研究热点。中空碳基纳米材料集成了中空材料和碳基材料的优势,作为电催化剂,在电解水方面有着潜在的应用价值。本文总结了近年来微纳米结构碳基中空材料作为新型电解水催化剂的研究进展,介绍了高效碳基中空析氧/析氢催化剂的设计原则和相应的设计策略,并对开发持久高效的中空碳基电解水催化剂进行了总结和展望。
中图分类号:
田同振, 李念武, 于乐. 中空碳基材料在电解水中的研究进展[J]. 化工学报, 2020, 71(6): 2466-2480.
Tongzhen TIAN, Nianwu LI, Le YU. Progress of carbon-based micro-/nanostructured hollow electrocatalysts for water splitting[J]. CIESC Journal, 2020, 71(6): 2466-2480.
1 | Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: insights into materials design[J]. Science, 2017, 355(6321): eaad4998. |
2 | Liu J, Liu Y, Liu N Y, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science, 2015, 347(6225): 970-974. |
3 | Zhu C Z, Shi Q R, Feng S, et al. Single-atom catalysts for electrochemical water splitting[J]. ACS Energy Letters, 2018, 3(7): 1713-1721. |
4 | Jiao Y, Zheng Y, Jaroniec M T, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086. |
5 | You B, Sun Y J. Innovative strategies for electrocatalytic water splitting[J]. Accounts of Chemical Research, 2018, 51(7): 1571-1580. |
6 | Wang J H, Cui W, Liu Q, et al. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Advanced Materials, 2016, 28(2): 215-230. |
7 | Zhang H B, Nai J W, Yu L, et al. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017, 1(1): 77-107. |
8 | Fei H L, Dong J C, Feng Y X, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nature Catalysis, 2018, 1(1): 63-72. |
9 | Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1: 0003. |
10 | Zheng X, Cao X, Li X, et al. Biomass lysine-derived nitrogen-doped carbon hollow cubes via a NaCl crystal template: an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Nanoscale, 2017, 9: 1059-1067. |
11 | Zhu G, Ma L, Lv H, et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors[J]. Nanoscale, 2017, 9: 1237-1243. |
12 | Zhou Y, Leng Y, Zhou W, et al. Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction[J]. Nano Energy, 2015, 16: 357-366. |
13 | Liu Y, Li X, Zhang Q H, et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots[J]. Angewandte Chemie-International Edition, 2020, 59: 1718-1726. |
14 | Xiao W, Zhang L, Bukhvalov D, et al. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction[J]. Nano Energy, 2020, 70: 104445. |
15 | Wang J Y, Ouyang T, Li N, et al. S, N co-doped carbon nanotube-encapsulated core-shelled CoS2@Co nanoparticles: efficient and stable bifunctional catalysts for overall water splitting[J]. Science Bulletin, 2018, 63: 1130-1140. |
16 | Liu Y, Yang Y P, Peng Z K, et al. Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values[J]. Nano Energy, 2019, 65: 104023. |
17 | 常进法, 肖瑶, 罗兆艳, 等.水电解制氢非贵金属催化剂的研究进展[J].物理化学学报, 2016, 32(7):1556-1592. |
Chang J F, Xiao Y, Luo Z Y, et al. Recent progress of non-noble metal catalysts in water electrolysis for hydrogen production[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1556-1592. | |
18 | Yan Y B, Miao J W, Yang Z H, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications[J]. Chemical Society Reviews, 2015, 44(10): 3295-3346. |
19 | Meng J S, Niu C J, Xu L H, et al. General oriented formation of carbon nanotubes from metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(24): 8212-8221. |
20 | Liu S H, Wang Z Y, Zhou S, et al. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution[J]. Advanced Materials, 2017, 29(31): 1700874. |
21 | Tian H, Liang J, Liu J. Nanoengineering carbon spheres as nanoreactors for sustainable energy applications[J]. Advanced Materials, 2019, 31(50): 1903886. |
22 | Liu J L, Zhu D D, Guo C X, et al. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions[J]. Advanced Energy Materials, 2017, 7(23): 1700518. |
23 | Yu Y F, Shi Y M, Zhang B. Synergetic transformation of solid inorganic-organic hybrids into advanced nanomaterials for catalytic water splitting[J]. Accounts of Chemical Research, 2018, 51(7): 1711-1721. |
24 | Zhan G W, Li P, Zeng H C. Architectural designs and synthetic strategies of advanced nanocatalysts[J]. Advanced Materials, 2018, 30(47): e1802094. |
25 | Li B W, Zeng H C. Architecture and preparation of hollow catalytic devices[J]. Advanced Materials, 2019, 31(38): 1801104. |
26 | Prieto G, Tuysuz H, Duyckaerts N, et al. Hollow nano- and microstructures as catalysts[J]. Chemical Reviews, 2016, 116(22): 14056-14119. |
27 | Huang K K, Sun Y, Zhang Y, et al. Hollow-structured metal oxides as oxygen-related catalysts[J]. Advanced Materials, 2019, 31(38): 1801430. |
28 | Lee J, Kim S M, Lee I S. Functionalization of hollow nanoparticles for nanoreactor applications[J]. Nano Today, 2014, 9(5): 631-667. |
29 | Park J, Kwon T, Kim J, et al. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions[J]. Chemical Society Reviews, 2018, 47(22): 8173-8202. |
30 | Yu L, Hu H, Wu H B, et al. Complex hollow nanostructures: synthesis and energy-related applications[J]. Advanced Materials, 2017, 29(15): 1604563. |
31 | Zhu W, Chen Z, Pan Y, et al. Functionalization of hollow nanomaterials for catalytic applications: nanoreactor construction[J]. Advanced Materials, 2019, 31(38): e1800426. |
32 | Jin H Y, Guo C X, Liu X, et al. Emerging two-dimensional nanomaterials for electrocatalysis[J]. Chemical Reviews, 2018, 118(13): 6337-6408. |
33 | Stamenkovic V R, Strmcnik D, Lopes P P, et al. Energy and fuels from electrochemical interfaces[J]. Nature Materials, 2017, 16(1): 57-69. |
34 | Jaramillo T F, Jorgensen K P, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100-102. |
35 | Morales-Guio C G, Hu X L. Amorphous molybdenum sulfides as hydrogen evolution catalysts[J]. Accounts of Chemical Research, 2014, 47(8): 2671-2681. |
36 | Suen N T, Hung S F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. |
37 | Zhang J F, Liu J Y, Xi L F, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2018, 140(11): 3876-3879. |
38 | Wang Y W, Qiu W J, Song E H, et al. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications[J]. National Science Review, 2018, 5(3): 327-341. |
39 | Chen C, Kang Y J, Huo Z Y, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343. |
40 | Yu L, Yu X Y, Lou X W. The Design and synthesis of hollow micro-/nanostructures: present and future trends[J]. Advanced Materials, 2018, 30(38): 1800939. |
41 | Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials, 2016, 1(6): 16023. |
42 | Liu Q, Tian J Q, Cui W, et al. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution[J]. Angewandte Chemie-International Edition, 2014, 53(26): 6710-6714. |
43 | Gong M, Li Y G, Wang H L, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23): 8452-8455. |
44 | Ma T Y, Dai S, Jaroniec M, et al. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts[J]. Angewandte Chemie-International Edition, 2014, 53(28): 7281-7285. |
45 | Pan Y, Sun K, Liu S, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. Journal of the American Chemical Society, 2018, 140(7): 2610-2618. |
46 | Yang H, Wang X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications[J]. Advanced Materials, 2019,31(38): 1800743. |
47 | Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal-organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials, 2019, 31(11): e1804903. |
48 | Yu L, Wu H B, Lou X W. Self-templated formation of hollow structures for electrochemical energy applications[J]. Accounts of Chemical Research, 2017, 50(2): 293-301. |
49 | Feng J, Yin Y D. Self-templating approaches to hollow nanostructures[J]. Advanced Materials, 2019, 31(38): 1802349. |
50 | 李莉香, 刘永长, 耿新, 等.氮掺杂碳纳米管的制备及其电化学性能[J].物理化学学报, 2011, 27(2):443-448. |
Li L X, Liu Y C, Geng X, et al. Synthesis and electrochemical performance of nitrogen-doped carbon nanotubes[J]. Acta Physico-Chimica Sinica, 2011, 27(2): 443-448. | |
51 | Li J C, Hou P X, Zhao S Y, et al. A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Energy & Environmental Science, 2016, 9(10): 3079-3084. |
52 | Zhao Y, Nakamura R, Kamiya K, et al. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation[J]. Nature Communications, 2013, 4: 2390. |
53 | Tavakkoli M, Kallio T, Reynaud O, et al. Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction[J]. Angewandte Chemie-International Edition, 2015, 54(15): 4535-4538. |
54 | Wang T, Guo Y R, Zhou Z X, et al. Ni-Mo nanocatalysts on N-doped graphite nanotubes for highly efficient electrochemica hydrogen evolution in acid[J]. ACS Nano, 2016, 10(11): 10397-10403. |
55 | Li D J, Maiti U N, Lim J, et al. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction[J]. Nano Letters, 2014, 14(3): 1228-1233. |
56 | Wang D Y, Gong M, Chou H L, et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015, 137(4): 1587-1592. |
57 | Chen W X, Pei J J, He C T, et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction[J]. Angewandte Chemie-International Edition, 2017, 56(50): 16086-16090. |
58 | Wan X K, Wu H B, Guan B Y, et al. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity[J]. Advanced Materials, 2020, 32(7): 1901349. |
59 | Chen L F, Xu Q. Converting MOFs into amination catalysts[J]. Science, 2017, 358(6361): 304-305. |
60 | Jiang H L, Liu B, Lan Y Q, et al. From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake[J]. Journal of the American Chemical Society, 2011, 133(31): 11854-11857. |
61 | Yan L T, Cao L, Dai P C, et al. Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting[J]. Advanced Functional Materials, 2017, 27(40): 1703455. |
62 | Zhang S L, Guan B Y, Lou X W. Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction[J]. Small, 2019, 15(13): 1805324. |
63 | Ma T Y, Dai S, Jaroniec M, et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. Journal of the American Chemical Society, 2014, 136(39): 13925-13931. |
64 | Zhang M D, Dai Q B, Zheng H G, et al. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting[J]. Advanced Materials, 2018, 30(10): 1705431. |
65 | Guan C, Liu X M, Ren W N, et al. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[J]. Advanced Energy Materials, 2017, 7(12): 1602391. |
66 | Amiinu I S, Pu Z H, Liu X B, et al. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries[J]. Advanced Functional Materials, 2017, 27(44): 1702300. |
67 | Xia B Y, Yan Y, Li N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nature Energy, 2016, 1: 15006. |
68 | Lu X F, Yu L, Lou X W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts[J]. Science Advances, 2019, 5(2): eaav6009. |
69 | He P, Yu X Y, Lou X W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution[J]. Angewandte Chemie-International Edition, 2017, 56(14): 3897-3900. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[11] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[12] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[13] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||