1 |
Liu H, Wei Z, He W, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review[J]. Energy Conversion and Management, 2017, 150: 304-330.
|
2 |
程广玉, 高蕾, 顾洪汇, 等. 高功率锂离子电池的研制及快充性能[J]. 电池, 2019, 49(2): 94-97.
|
|
Cheng G Y, Gao L, Gu H H, et al. Developing and fast charge performance of high power Li-ion battery [J]. Battery Bimonthly, 2019, 49(2): 94-97.
|
3 |
陈莹. 电动车用锂离子电池快速充电技术研究[D]. 无锡: 江南大学, 2018.
|
|
Chen Y. The study of fast-charging control strategy of lithium-ion battery on electric vehicle[D]. Wuxi: Jiangnan University, 2018.
|
4 |
郭继鹏. 储能锂离子电池恒流与恒功率充放电特性研究[D]. 合肥: 合肥工业大学, 2018.
|
|
Guo J P. Research on the characteristics of energy storage lithium-ion battery with constant current and constant power [D]. Hefei: Hefei University of Technology, 2018.
|
5 |
Kim G H, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489.
|
6 |
Lu L, Han X, Li J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
|
7 |
董缇, 彭鹏, 曹文炅, 等. 锂离子电池热管理和安全性研究[J]. 新能源进展, 2019, 7(1): 50-59.
|
|
Dong T, Peng P, Cao W J, et al. Research on thermal management and safety of Li-ion batteries [J]. Advances in New and Renewable Energy, 2019, 7(1): 50-59.
|
8 |
邓远富, 曾振欧. 现代电化学[M].广州: 华南理工大学出版社, 2014: 150.
|
|
Deng Y F, Zeng Z O. Modern Electrochemistry [M]. Guangzhou: South China University of Technology Press, 2014: 150
|
9 |
梁斌, 段天平, 唐盛伟. 化学反应工程[M].北京: 科学出版社, 2010: 5.
|
|
Liang B, Duan T P, Tang S W. Chemical Reaction Engineering[M]. Beijing: Science Press, 2010: 5.
|
10 |
Grandjean T, Barai A, Hosseinzadeh E, et al. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management[J]. Journal of Power Sources, 2017, 359: 215-225.
|
11 |
Khandelwal A, Hariharan K S, Gambhire P, et al. Thermally coupled moving boundary model for charge–discharge of LiFePO4 /C cells[J]. Journal of Power Sources, 2015, 279: 180-196.
|
12 |
Lai Y, Du S, Ai L, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049.
|
13 |
Jiang F, Peng P, Sun Y. Thermal analyses of LiFePO4/graphite battery discharge processes[J]. Journal of Power Sources, 2013, 243: 181-194.
|
14 |
Drake S J, Martin M, Wetz D A, et al. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements[J]. Journal of Power Sources, 2015, 285: 266-273.
|
15 |
Basu S, Patil R S, Ramachandran S, et al. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes[J]. Journal of Power Sources, 2015, 283: 132-150.
|
16 |
Doyle M, Newman J, Gozdz A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903.
|
17 |
Doyle M, Newman J. Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process[J]. Journal of Applied Electrochemistry, 1997, 27(7): 846-856.
|
18 |
Smith K, Wang C Y. Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles[J]. Journal of Power Sources, 2006, 161(1): 628-639.
|
19 |
Zhao W, Luo G, Wang C Y. Modeling internal shorting process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2015, 162(7): A1352-A1364.
|
20 |
Ogihara N, Itou Y, Sasaki T, et al. Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries[J]. Journal of Physical Chemistry C, 2015, 119(9): 4612-4619.
|
21 |
Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526.
|
22 |
Gu W, Wang C Y. Thermal-electrochemical modeling of battery systems[J]. Journal of the Electrochemical Society, 2000, 147(8): 2910-2922.
|
23 |
Fang W, Kwon O J, Wang C Y. Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell[J]. International Journal of Energy Research, 2010, 34(2): 107-115.
|
24 |
Ramadass P, Haran B, Gomadam P M, et al. Development of first principles capacity fade model for Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(2): A196-A203.
|
25 |
Guo G, Long B, Cheng B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8): 2393-2398.
|
26 |
Santhanagopalan S, Ramadass P, Zhang J. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194(1): 550-557.
|
27 |
Peng P, Jiang F. Thermal behavior analyses of stacked prismatic LiCoO2 lithium-ion batteries during oven tests[J]. International Journal of Heat and Mass Transfer, 2015, 88: 411-423.
|
28 |
Hatchard T D, Macneil D D, Basu A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7): A755-A761.
|
29 |
Zhao W, Luo G, Wang C Y. Modeling nail penetration process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 162(1): A207-A217.
|
30 |
Dong T, Peng P, Jiang F, et al. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat and Mass Transfer, 2018: 261-272.
|
31 |
毛亚, 白清友, 马尚德, 等. 循环老化对锂离子电池在绝热条件下的产热及热失控影响[J]. 储能科学与技术, 2018, 7(6): 172-179.
|
|
Mao Y, Bai Q Y, Ma S D, et al. Influence of cycling on the heat-release and thermal runaway of the lithium ion battery under adiabatic condition[J]. Energy Storage Science and Technology, 2018, 7(6): 172-179.
|
32 |
Yao K P C, Okasinski J S, Kalaga K, et al. Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using operando energy dispersive X-ray diffraction[J]. Energy & Environmental Science, 2019, 12(2): 656-665.
|