化工学报 ›› 2020, Vol. 71 ›› Issue (9): 3995-4005.DOI: 10.11949/0438-1157.20200538
收稿日期:
2020-05-09
修回日期:
2020-07-27
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
张小玲
作者简介:
张迪(1986—),女,高级工程师,Di ZHANG1,2(),Gang YANG1,2,Dongpeng LIU1,Xiaoling ZHANG1()
Received:
2020-05-09
Revised:
2020-07-27
Online:
2020-09-05
Published:
2020-09-05
Contact:
Xiaoling ZHANG
摘要:
高温热泵可以有效回收工业余热,达到节能减排和保护环境的目的。目前,有关高温热泵技术的研究热点在于寻找一种全球变暖潜能值(GWP)低、使用性能良好的工质,以替代现有CFC-114、HFC-245fa工质。对新型环境友好型工质HFO-1234ze(Z)进行了综述,其GWP<1,临界温度高于423 K,是一种潜在的高温热泵替代工质。总结了近年来国内外学者对HFO-1234ze(Z)的合成技术、热力学性质、输运性质、传热性能等方面的研究,并分析了HFO-1234ze(Z)在高温热泵系统中应用的可行性,认为HFO-1234ze(Z)在高温热泵中具有较好的工作性能和发展前景。
中图分类号:
张迪, 杨刚, 刘冬鹏, 张小玲. 新型低GWP高温热泵工质HFO-1234ze(Z)的研究进展[J]. 化工学报, 2020, 71(9): 3995-4005.
Di ZHANG, Gang YANG, Dongpeng LIU, Xiaoling ZHANG. Research progress of low GWP working fluid HFO-1234ze(Z) for high temperature heat pumps[J]. CIESC Journal, 2020, 71(9): 3995-4005.
1 | 李萌. 基于余热回收用的热泵技术对比研究[D]. 天津: 天津大学, 2013. |
Li M. Comparative study on heat pump technology applied in waste heat recovery[D]. Tianjin: Tianjin University, 2014. | |
2 | Forman C, Muritala I K, Pardemann R, et al. Estimating the global waste heat potential[J]. Renewable & Sustainable Energy Reviews, 2016, 57: 1568-1579. |
3 | Chua K J, Chou S K, Yang W M. Advances in heat pump systems: a review[J]. Applied Energy, 2010, 87(12): 3611-3624. |
4 | Mateu-Ryo C, Navarro-Esbri J, Mota-Babiloni A, et al. Theoretical evaluation of different high-temperature heat pump configurations for low-grade waste heat recovery[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2018, 90: 229-237. |
5 | Frate G F, Ferrari L, Desideri U. Analysis of suitability ranges of high temperature heat pump working fluids[J]. Applied Thermal Engineering, 2019, 150: 628-640. |
6 | 姚远, 龚宇烈, 陆振能. 高温热泵及热泵蒸汽机的研究进展[J]. 新能源进展, 2014, 2(3): 190-196. |
Yao Y, Gong Y L, Lu Z N. Research progress of high temperature heat pump and heat pump steam generator[J]. Advances in New and Renewable Energy, 2014, 2(3): 190-196. | |
7 | Zhang J, Zhang H H, He Y L, et al. A comprehensive review on advances and applications of industrial heat pumps based on the practices in China[J]. Applied Energy, 2016, 178: 800-825. |
8 | Mclinden M O, Brown J S, Brignoli R, et al. Limited options for low-global-warming-potential refrigerants[J]. Nature Communications, 2017, 8: 14476. |
9 | EU. Regulation (EU) No. 517/2014 of the European parliament and of the council of 16 April 2014 on fluorinated greenhouse gases and repealing regulation (EC) No. 842/2006[R]. The European Parliament and Council of the European Union, 2014. |
10 | Calm J M. The next generation of refrigerants—historical review, considerations, and outlook[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2008, 31(7): 1123-1133. |
11 | Ciconkov R. Refrigerants: there is still no vision for sustainable solutions[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2018, 86: 441-448. |
12 | Abas N, Kalair A R, Khan N, et al. Natural and synthetic refrigerants, global warming: a review[J]. Renewable & Sustainable Energy Reviews, 2018, 90: 557-569. |
13 | 刘雨声, 李万勇, 施骏业, 等. HFO-1234yf热泵技术综述与潜力分析[J]. 制冷学报, 2020, 41(1): 10-19. |
Liu Y S, Li W Y, Shi J Y, et al. Review and potential analysis of HFO-1234yf heat pump technology[J]. Journal of Refrigeration, 2020, 41(1): 10-19. | |
14 | 何永宁, 夏源, 金磊, 等. 制冷剂R1234ze在高温热泵中应用的对比研究[J]. 流体机械, 2014, 42(3): 62-66. |
He Y N, Xia Y, Jin L, et al. Investigation on application of refrigerant R1234ze in high-temperature heat pump[J]. Fluid Machinery, 2014, 42(3): 62-66. | |
15 | 许晨怡, 郭智恺, 史婉君, 等. HFOs制冷剂在制冷空调领域的替代研究综述[J]. 制冷与空调, 2019, 19(8): 1-13. |
Xu C Y, Guo Z K, Shi W J, et al. Substitution research summary of HFO refrigerants in refrigeration and air-conditioning field[J]. Refrigeration and Air-conditioning, 2019, 19(8): 1-13. | |
16 | 杨梦, 张华, 孟照峰, 等. 新型环保高温工质HFO-1336mzz(Z)的研究进展[J]. 制冷学报, 2019, 40(6): 46-52, 110. |
Yang M, Zhang H, Meng Z F, et al. Research progress of the new environmentally friendly high temperature refrigerant HFO-1336mzz(Z)[J]. Journal of Refrigeration, 2019, 40(6): 46-52, 110. | |
17 | Myhre G, Shindell D, Bréon F M, et al. 2013: Anthropogenic and Natural Radiative Forcing. In:Climate Change2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment. Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2013. |
18 | ASHRAR. ANSI/ASHRAE Standard 34-safety standard for refrigeration systems and designation and classification of refrigerants[S]. Atlanta: ASHRAE, 2016. |
19 | Arpagaus C, Bless F, Uhlmann M, et al. High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials [J]. Energy, 2018, 152: 985-1010. |
20 | Brown J S, Zilio C, Cavallini A. The fluorinated olefin R-1234ze(Z) as a high-temperature heat pumping refrigerant[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2009, 32(6): 1412-1422. |
21 | Brown J S. HFOs new, low global warming potential refrigerants[J]. ASHRAE Journal, 2009, 51(8): 22. |
22 | Fukuda S, Kondou C, Takata N, et al. Low GWP refrigerants HFO-1234ze(E) and HFO-1234ze(Z) for high temperature heat pumps[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2014, 40: 161-173. |
23 | Longo G A, Mancin S, Righetti G, et al. Assessment of the low-GWP refrigerants R600a, HFO-1234ze(Z) and HFO-1233zd(E) for heat pump and organic Rankine cycle applications[J]. Applied Thermal Engineering, 2020, 167: 114804. |
24 | 焦锋刚, 李立. HFO-1234ze合成技术及应用研究进展[J]. 有机氟工业, 2018, (3): 44-49. |
Jiao F G, Li L. Advances in synthesis technology and application of HFO-1234ze[J]. Organo-Fluorine Industry, 2018, (3): 44-49. | |
25 | Nakamura N, Okamoto S. Method for manufacturing (E)-1,3,3,3-tetrafluoropropene: JP6197637[P]. 2017-09-20. |
26 | Haridason N K, Shankland I R, Bradley D E, et al. Process for producing fluoroolefins: WO03027051[P]. 2003-04-03. |
27 | Tung H, Johnson R C, Merkel D C, et al. Process for the manufacture of1,3,3,3-tetrafluoropropene: WO2011034991[P]. 2011-03-24. |
28 | Merkel D C, Wang H Y, Pokrovski K A, et al. Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane: US8648221[P]. 2014-02-11. |
29 | Nair H K, Singh R R, Poss A J, et al. Process for1,3,3,3-tetrafluoropropene: WO2013122822[P]. 2013-08-22. |
30 | Nose M, Komatus Y, Sugiyama A, et al. Process for preparing2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene: WO2010016401[P]. 2010-02-19. |
31 | Lei J, Wang A G, Yang B, et al. Method for co-production of2,3,3,3-tetrafluoropropylene and 1,3,3,3-tetrafluoropropylene: WO2016197280[P]. 2015-09-21. |
32 | Mukhopadhyay S, Nair H, van der Puy M, et al. Method for producing fluorinated organic compounds: WO2007056194[P]. 2007-04-18. |
33 | 方海滔, 金坚勇, 陈伟, 等. 一种反式-1,3,3,3-四氟丙烯的制备方法: 105481641[P]. 2016-04-13. |
Fang H T, Jin J Y, Chen W, et al. Preparation method of trans-1, 3, 3, 3-tetrafluoropropene: 105481641[P]. 2016-04-13. | |
34 | Moritz F K, Dieter L. Titanium-catalyzed C-F activation of fluoroalkenes[J]. Angewandte Chemie-International Edition, 2010, 49(16): 2933-2936. |
35 | Okamoto S, Takada N. Method for producing cis-1,3,3,3-tetrafluoropropene: US20150112103[P]. 2015-04-23. |
36 | 卢朋, 刘瑶瑶, 张迪, 等. 氢氟烯烃气相异构化催化剂研究进展[J]. 浙江化工, 2019, 50(3): 1-5. |
Lu P, Liu Y Y, Zhang D, et al. A review of the catalysts for gas phase isomerization of hydrofluoroolefins[J]. Zhejiang Chemical Industry, 2019, 50(3): 1-5. | |
37 | Mikielewicz D, Wajs J. Performance of the very high-temperature heat pump with low GWP working fluids[J]. Energy, 2019, 182: 460-470. |
38 | Poling B E, Prausnitz J M, O’Connell J P. The Properties of Gases and Liquids[M]. 5th ed. New York: McGraw-Hill, 2001. |
39 | Raabe G. Molecular modeling of fluoropropene refrigerants[J]. Journal of Physical Chemistry B, 2012, 116(19): 5744-5751. |
40 | Tanaka K, Maruko K, Fujimoto Y, et al. PVT properties of R1234ze(Z)[C]// The 4th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants. Delft, The Netherlands, 2013. |
41 | Fedele L, Di Nicola G, Brown J S, et al. Measurements and correlations of cis-1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze(Z)) saturation pressure[J]. International Journal of Thermophysics, 2014, 35(1): 1-12. |
42 | Higashi Y, Hayasaka S, Ogiya S. of PVT properties Measurements, pressures vapor, and critical parameters for low GWP refrigerant R-1234ze(Z) [C]// The 4th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants. Delft, The Netherlands, 2013. |
43 | Higashi Y, Hayasaka S, Shirai C, et al. Measurements of PρT properties, vapor pressures, saturated densities, and critical parameters for R-1234ze(Z) and R-245fa[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2015, 52: 100-108. |
44 | Akasaka R, Higashi Y, Miyara A, et al. A fundamental equation of state for cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z))[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2014, 44: 168-176. |
45 | Lemmon E W, Bell I H, Huber M L, et al. NIST reference fluid thermodynamic and transport properties database - REFPROP, Version10.0[CP]. Gaithersburg: National Institute of Standards and Technology, Standard Reference Data Program, 2017. |
46 | Mukhopadhyay S, Nair H K, Tung H S, et al. Processes for synthesis of1,3,3,3-tetrafluoropropene: US7345209[P]. 2008-03-18. |
47 | Kayukawa Y, Tanaka K, Kano Y, et al. Experimental evaluation of the fundamental properties of low-GWP refrigerant R-1234ze(Z) [C]// Proceedings of the International Symposium on New Refrigerants and Environmental Technology. Kobe, Japan, 2012. |
48 | Tanaka K. Measurements of vapor pressure and saturated liquid density for HFO-1234ze(E) and HFO-1234ze(Z)[J]. Journal of Chemical and Engineering Data, 2016, 61(4): 1645-1648. |
49 | 卓可凡, 赵延兴, 董学强, 等. HFO-1234ze(Z)在243.152~373.150 K内的饱和蒸气压实验测量及拟合[J]. 科学通报, 2017, 62(23): 2691-2697. |
Zhuo K F, Zhao Y X, Dong X Q, et al. Saturation pressure measurement and correlation of cis-1,3,3,3-tetrafluoropropene at temperatures ranging from 243.152 to 373.150 K[J]. Chinese Science Bulletin, 2017, 62(23): 2691-2697. | |
50 | Sakoda N, Shiheng J, Kohno M, et al. Gaseous PVT property measurements of cis-1,3,3,3-tetrafluoropropene[J]. Journal of Chemical and Engineering Data, 2017, 62(7): 2178-2182. |
51 | Zhang X D. Experimental measurements of saturated vapor pressures for R1234ze(Z), R600a, and R134[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(3): 779-784. |
52 | Isfahani A H M, Reiszadeh M, Koupaye S Y, et al. Empirical correlations and an artificial neural network approach to estimate saturated vapor pressure of refrigerants[J]. Physical Chemistry Research, 2017, 5(2): 281-292. |
53 | Fedele L, Brown J S, Di Nicola G, et al. Measurements and correlations of cis-1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze(Z)) subcooled liquid density and vapor-phase PvT[J]. International Journal of Thermophysics, 2014, 35(8): 1415-1434. |
54 | Bobbo S, Di Nicola G, Zilio C, et al. Low GWP halocarbon refrigerants: a review of thermophysical properties[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2018, 90: 181-201. |
55 | Romeo R, Albo P A G, Lago S, et al. Experimental liquid densities of cis-1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze(Z)) and trans-1-chloro-3,3,3-trifluoropropene (HFO-1233zd(E))[J]. International Journal of Refrigeration-Revue International Du Froid, 2017, 79: 176-182. |
56 | Lago S, Albo P A G, Brown J S. Compressed liquid speed of sound measurements of cis-1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze(Z))[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2016, 65: 55-59. |
57 | Lozano-Martin D, Ripa D M, Gavioso R M. Speed of sound in gaseous cis-1,3,3,3-tetrafluoropropene (HFO-1234ze(Z)) between 307 K and 420 K[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2019, 100: 37-47. |
58 | Akasaka R, Lemmon E W. Fundamental equations of state for cis-1,3,3,3-tetrafluoropropene R-1234ze(Z) and 3,3,3-trifluoropropene (R-1243zf)[J]. Journal of Chemical and Engineering Data, 2019, 64(11): 4679-4691. |
59 | Ishida H, Mori S, Kariya K, et al. Thermal conductivity measurement of low GWP refrigerants with hot-wire method[C]// Proceedings of the Twenty-Fourth IIR International Congress of Refrigeration (ICR2015).Yokohama, Japan, 2015. |
60 | Kariya K, Mori S, Miyara A. Viscosity measurement of low GWP refrigerants with a tandem capillary tubes method[C]// Proceedings of the Twenty-Fourth IIR International Congress of Refrigeration (ICR2015).Yokohama, Japan, 2015. |
61 | Kariya K, Islam M A, Jahangu A M, et al. Transport properties measurement on low GWP alternative refrigerants[C]//Kristiawan B, Anwar M, Wijayanta A, et al. International Conference on Engineering, Science and Nanotechnology (ICESNANO). Solo, Indonesia: Amer. Inst. Physics, 2017. |
62 | Islam M A, Kariya K, Ishida H, et al. Application of the extended corresponding states model for prediction of the viscosity and thermal conductivity of cis-1,3,3,3-tetrafluoropropene (HFO-1234ze(Z))[J]. Science and Technology for the Built Environment, 2016, 22(8): 1167-1174. |
63 | Kondou C, Nagata R, Nii N, et al. Surface tension of low GWP refrigerants HFO-1243zf, HFO-1234ze(Z), and HFO-1233zd(E)[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2015, 53: 80-89. |
64 | 张雪东, 公茂琼, 吴剑峰. 替代工质水平管内流动凝结换热研究综述[J]. 制冷学报, 2013, 34(5): 28-33, 64. |
Zhang X D, Gong M Q, Wu J F. Review on flow condensation heat transfer of alternative refrigerants inside horizontal tubes[J]. Journal of Refrigeration, 2013, 34(5): 28-33, 64. | |
65 | Kondou C, Mishima F, Liu J F, et al. Condensation and evaporation of HFC-134a, HFO-1234ze(E) and HFO-1234ze(Z) flow in horizontal microfin tubes at higher temperature[C]//International Refrigeration and Air Conditioning Conference. 2014. |
66 | Longo G A, Zilio C, Righetti G, et al. Experimental assessment of the low GWP refrigerant HFO-1234ze(Z) for high temperature heat pumps[J]. Experimental Thermal and Fluid Science, 2014, 57: 293-300. |
67 | Longo G A, Mancin S, Righetti G, et al. Boiling of the new low-GWP refrigerants HFO-1234ze(Z) and HFO-1233zd(E) inside a small commercial brazed plate heat exchanger[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2019, 104: 376-385. |
68 | Nagata R, Kondou C, Koyama S. Comparative assessment of condensation and pool boiling heat transfer on horizontal plain single tubes for HFO-1234ze(E), HFO-1234ze(Z), and HFO-1233zd(E)[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2016, 63: 157-170. |
69 | Nagata R, Kondou C, Koyama S. Enhancement of HFO-1234ze(Z) pool boiling heat transfer on horizontal titanium tubes for high-temperature heat pumps[J]. Science and Technology for the Built Environment, 2017, 23(6): 923-932. |
70 | Shon B H, Jeon S W, Kim Y, et al. Review: condensation and evaporation characteristics of low GWP refrigerants in plate heat exchangers[J]. International Journal of Air-Conditioning and Refrigeration, 2016, 24(2): 12. |
71 | Bertinat M P. Fluids for high temperature heat pumps[J]. International Journal of Refrigeration, 1986, 9(1): 43-50. |
72 | Kondou C, Koyama S. Thermodynamic assessment of high-temperature heat pumps using low-GWP HFO refrigerants for heat recovery[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2015, 53: 126-141. |
73 | Bamigbetan O, Eikevik T M, Neksa P, et al. Theoretical analysis of suitable fluids for high temperature heat pumps up to 125℃ heat delivery[J]. International Journal of Refrigeration, 2018, 92: 185-195. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||