化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 158-165.DOI: 10.11949/0438-1157.20191209
收稿日期:
2019-10-23
修回日期:
2019-11-21
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
王德昌
作者简介:
孙苏芮(1997—),女,硕士研究生,基金资助:
Surui SUN(),Dechang WANG(),Jincui ZHANG,Zhen LIU,Yanhui LI
Received:
2019-10-23
Revised:
2019-11-21
Online:
2020-04-25
Published:
2020-04-25
Contact:
Dechang WANG
摘要:
膜构架蓄能器是以中空纤维膜为基本结构,不仅能够实现蓄能,同时能够解决溴化锂溶液浓度差蓄能器中结晶后的放能困难的问题。搭建了膜蓄能器放能过程传热传质实验测试系统,建立了应用于太阳能吸收式制冷系统中的膜架构蓄能器传热传质的三维数学模型,并利用 CFD 软件进行了求解。将计算结果与实验结果相比较,验证了该三维非稳态数学模型的可靠性。实验和仿真结果表明,质量分数为70% 的溴化锂溶液的水蒸气分子平均传质速率比质量分数为60%的溶液高44.03%;当蒸发温度从4.5℃提高到12.3℃时,水蒸气分子的平均传质速率将提高108.34%;当膜通道的有效长度从80 mm减少到30 mm时,水蒸气分子的传质速率会提高40.77%。
中图分类号:
孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
Surui SUN, Dechang WANG, Jincui ZHANG, Zhen LIU, Yanhui LI. Analysis of heat and mass transfer characteristics during energy discharging in membrane energy accumulator[J]. CIESC Journal, 2020, 71(S1): 158-165.
传感器 | 型号 | 量程 | 精度 |
---|---|---|---|
温度传感器 | Pt-100 | -50~300℃ | ±0.2℃ |
称重传感器 | EVT-18C | 0~1 kg | ±0.02% |
压力传感器 | PTX 5072-TC-A3-CA-H0-PA | 0~1 bar | ±0.04% |
表1 传感器规格参数
Table 1 Sensor specifications
传感器 | 型号 | 量程 | 精度 |
---|---|---|---|
温度传感器 | Pt-100 | -50~300℃ | ±0.2℃ |
称重传感器 | EVT-18C | 0~1 kg | ±0.02% |
压力传感器 | PTX 5072-TC-A3-CA-H0-PA | 0~1 bar | ±0.04% |
膜组件编号 | 有效长度Leff/mm | 膜间距s/mm | 有效面积S/m2 |
---|---|---|---|
1 | 50 | 3.6 | 0.06625 |
2 | 80 | 3.6 | 0.106 |
3 | 120 | 3.6 | 0.158 |
4 | 160 | 3.6 | 0.211 |
表2 膜组件参数
Table 2 Membrane component parameters
膜组件编号 | 有效长度Leff/mm | 膜间距s/mm | 有效面积S/m2 |
---|---|---|---|
1 | 50 | 3.6 | 0.06625 |
2 | 80 | 3.6 | 0.106 |
3 | 120 | 3.6 | 0.158 |
4 | 160 | 3.6 | 0.211 |
1 | Jowzi M, Veysi F, Sadeghi G. Novel experimental approaches to investigate distribution of solar insolation around the tubes in evacuated tube solar collectors[J]. Renewable Energy, 2018, 127: 724-732. |
2 | Anyanwu E E, Ogueke N V. Thermodynamic design procedure for solid absorption solar refrigeration[J]. Renewable Energy, 2005, 30(1): 81-96. |
3 | Alizadeh S. Multi-pressure absorption cycles in solar refrigeration: a technical and economical study[J]. Solar Energy, 2000, 69(1): 37-44. |
4 | Rivera C O, Rivera W. Modeling of an intermittent solar absorption refrigeration system operating with ammonia-lithium nitrate mixture[J]. Solar Energy Materials and Solar Cells, 2003, 76(3): 417-427. |
5 | 陈松江, 余晓明, 王正辉, 等. 一种太阳能-沼气驱动的吸收式制冷空调系统[J]. 制冷技术, 2012, 40(10): 65-69. |
Chen S J, Yu X M, Wang Z H, et al. An absorption refrigeration air-conditioning system driven by the solar energy and biogas[J]. Cryogenics and Superconductivity, 2012, 40(10): 65-69. | |
6 | Su B S, Han W, Jin H G. Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy[J]. Applied Energy, 2017, 206(15): 1-11. |
7 | Xu S M, Huang X D, Du R. An investigation of the solar powered absorption refrigeration on system with advanced energy storage technology[J]. Solar Energy, 2011, 85(9): 1794-1804. |
8 | 傅杰, 蒋绿林, 卢涛, 等. 相变储能太阳能热泵系统的试验研究[J]. 可再生能源, 2018, 36(1): 22-26. |
Fu J, Jiang L L, Lu T, et al. Experimental study on solar heat pump system of phase change energy storage[J]. Renewable Energy Resources, 2018, 36(1): 22-26. | |
9 | 陈源, 丁静, 陆建峰, 等. 太阳能热化学混合储能装置的储热性能[J]. 兰州理工大学学报, 2013, 39(5): 50-53. |
Chen Y, Ding J, Lu J F, et al. Thermal storage performance of solar thermal chemical hybrid energy storage device[J]. Journal of Lanzhou University of Technology, 2013, 39(5): 50-53. | |
10 | Liu H, Tsoukpoe K E N, Nolwenn L P. Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples[J]. Energy Conversion and Management, 2011, 52(6): 2427-2436. |
11 | 夏梦心, 徐士鸣. 溶液蓄能制冷与压缩制冷复合循环工作特性分析[J]. 节能, 2006, (12): 8-12. |
Xia M X, Xu S M. Analysis on the working characteristics of complex cycle of solution storage refrigeration and compression refrigeration[J]. Energy Conservation, 2006, (12): 8-12. | |
12 | 黄晓东, 徐士鸣. 溶液浓度差蓄能技术在太阳能蓄能制冷中的应用[J]. 太阳能学报, 2012, 33(1): 141-147. |
Huang X D, Xu S M. Application of solution concentration differential energy storage technology in solar energy storage refrigeration[J]. Acta Energiae Solaris Sinica, 2012, 33(1): 141-147. | |
13 | 徐士鸣, 张莉, 李革. 以水-溴化锂溶液为工质的制冷/制热潜能储存系统特性研究[J]. 大连理工大学学报, 2005, 45(2): 194-200. |
Xu S M, Zhang L, Li G. Study on the characteristics of refrigeration/heating potential storage system with water-lithium bromide solution as working quality[J]. Journal of Dalian University of Technology, 2005, 45(1): 194-200. | |
14 | Zhang X L, Li M Z, Shi W X, et al. Experimental investigation on charging and discharging performance of absorption thermal energy storage system[J]. Energy Conversion and Management, 2014, 85: 425-434. |
15 | Tsoukpoe K E N, Perier-Muzet M, Le Pierres N, et al. Thermodynamic study of a LiBr-H2O absorption process for solar heat storage with crystallization of the solution[J]. Solar Energy, 2014, 104: 2-15. |
16 | Wang D C, Liu Z, Zhang S H, et al. Investigation of heat and mass transfer characteristics during energy discharge in an energy storage unit using hollow fiber membranes[J]. International Journal of Heat and Mass Transfer, 2018, 117: 559-570. |
17 | Ibrahim N I, Al-Sulaiman F A, Ani F N. Solar absorption systems with integrated absorption energy storage—a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1602-1610. |
18 | Lefebvre E, Fan L, Gagniere E, et al. Lithium bromide crystallization in water applied to an inter-seasonal heat storage process[J]. Chemical Engineering Science, 2015, 133(8): 2-8. |
19 | Xu S M, Xu C H, Zhang L, et al. Numerical simulation of an advanced energy storage system using H2O-LiBr as working fluid(Ⅱ): System simulation and analysis[J]. International Journal of Refrigeration, 2007, 30(2): 364-376. |
20 | 高洪涛, 王小路. 不同溴化锂溶液浓度及添加剂对气泡泵工作特性影响的实验研究[J]. 工程热物理学报, 2013, 34(1): 19-21. |
Gao H T, Wang X L. Experimental study on the effect of different concentration of lithium bromide solution and additives on the working characteristics of bubble pump[J]. Journal of Engineering Thermophysics, 2013, 34(1): 19-21. | |
21 | Tsoukpoe K E N, Le Pierres N, Luo L. Experimentation of a LiBr-H2O absorption process for long-term solar thermal storage: prototype design and first results[J]. Energy, 2013, 53(1): 179-198. |
22 | Liu H, Tsoukpoe K E N, Le Pierres N, et al. Evaluation of a seasonal storage of solar energy for house heating using different absorption couples[J]. Energy Conversion and Management, 2011, 52(6): 2427-2436. |
23 | 秦晓东, 王德昌, 刘振, 等. 平膜储能器溶晶过程实验研究[J]. 制冷学报, 2017, 38(6): 27-33. |
Qin X D, Wang D C, Liu Z, et al. Experimental study on dissolved crystal process of flat film energy accumulator[J]. Journal of Refrigeration, 2017, 38(6): 27-33. | |
24 | 王赞社, 胡俊涛, 顾兆林, 等. 膜蒸馏技术在溶液蓄能中的应用[J]. 制冷学报, 2018, 39(3): 64-69. |
Wang Z S, Hu J T, Gu Z L, et al. Application of membrane distillation technology in solution storage[J]. Journal of Refrigeration, 2018, 39(3): 64-69. | |
25 | Wang Z S, Gu Z L, Feng S Y, et al. Application of vacuum membrane distillation to lithium bromide absorption refrigeration system[J]. International Journal of Refrigeration, 2009, 32(7): 1587-1596. |
26 | 刘振, 王德昌, 田小亮, 等. 平膜和中空纤维膜储能器放能特性分析[J]. 工程热物理学报, 2019, 40(5): 38-45. |
Liu Z, Wang D C, Tian X L, et al. Analysis of energy discharge characteristics of flat film and hollow fiber membrane energy storage[J]. Journal of Engineering Thermophysics, 2019, 40(5): 38-45. | |
27 | 李赛男. 溴化锂吸收式制冷中膜蓄能器传热传质特性分析[J]. 科技视界, 2016, (5): 154-159. |
Li S N. Analysis of heat and mass transfer characteristics of membrane energy accumulator in lithium bromide absorption refrigeration[J]. Science & Technology Vision, 2016, (5): 154-159. | |
28 | Liu C Z, WU J Q, Ren Q L, et al. Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification[J]. Materials Chemistry and Physics, 2014, 85(2/3): 340-346. |
29 | Lawson K W, Lloyd D R. Membrane distillation (Ⅱ): Direct contact MD[J]. Journal of Membrane Science, 1996, 120(1): 123-133. |
30 | 王可达, 赵之平, 陈康成, 等. 膜蒸馏过程传递机理研究进展(Ⅳ): 渗透膜蒸馏[J]. 膜科学与技术, 2013, 33(2): 118-124. |
Wang K D, Zhao Z P, Chen K C, et al. Research progress on transfer mechanism of membrane distillation process (Ⅳ): Membrane distillation [J]. Membrane Science and Technology, 2013, 33(2): 118-124. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[8] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||