化工学报 ›› 2020, Vol. 71 ›› Issue (S2): 166-175.DOI: 10.11949/0438-1157.20200681
吉亚萍1(),云和明1(),耿文广2(),李萌1,于仓仓1,陈宝明1
收稿日期:
2020-06-02
修回日期:
2020-07-07
出版日期:
2020-11-06
发布日期:
2020-11-06
通讯作者:
云和明,耿文广
作者简介:
吉亚萍(1995—),女,硕士研究生,Yaping JI1(),Heming YUN1(),Wenguang GENG2(),Meng LI1,Cangcang YU1,Baoming CHEN1
Received:
2020-06-02
Revised:
2020-07-07
Online:
2020-11-06
Published:
2020-11-06
Contact:
Heming YUN,Wenguang GENG
摘要:
基于CFD软件建立了两种不同结构的方形微通道热沉,并对其进行数值计算,模拟得到热沉的温度场和压力场。在此基础上,研究了不同微通道分布方式、不同质量流率和不同热通量对热沉的温度、压降的影响,同时基于耗散理论对比分析来获得方形微通道热沉换热效果较好的优化方案,在固定边界热流条件下,耗散越小,换热效果越好。计算结果表明:随着质量流率的增大,热沉温度逐渐降低,进出口压差逐渐增大,PEC逐渐增大,耗散逐渐减小;随着热通量的增大,热沉温度逐渐升高,进出口压差逐渐降低,PEC逐渐增大,耗散逐渐减小。微通道分布方式为上层内切圆半径-下层外接圆半径分布时热沉的温度更低,PEC更大,耗散更小,传热效率更高。
中图分类号:
吉亚萍, 云和明, 耿文广, 李萌, 于仓仓, 陈宝明. 方形微通道热沉的耗散优化分析[J]. 化工学报, 2020, 71(S2): 166-175.
Yaping JI, Heming YUN, Wenguang GENG, Meng LI, Cangcang YU, Baoming CHEN. Entransy dissipation theory optimization analysis of square microchannel heat sink[J]. CIESC Journal, 2020, 71(S2): 166-175.
序号 | 通道分布 | 方案编号 | 图号 |
---|---|---|---|
1 | 上层内切圆半径-下层外接圆半径分布 | case1 | |
2 | 上层外接圆半径-下层内切圆半径分布 | case2 |
表1 不同几何模型的分类
Table 1 Classification of different geometric models
序号 | 通道分布 | 方案编号 | 图号 |
---|---|---|---|
1 | 上层内切圆半径-下层外接圆半径分布 | case1 | |
2 | 上层外接圆半径-下层内切圆半径分布 | case2 |
1 | Laohalertdecha S, Naphon P, Wongwises S. A review of electrohydrodynamic enhancement of heat transfer [J]. Renewable and Sustainable Energy Reviews, 2007, 11(5): 858-876. |
2 | Murshed S M S, Castro C A N D, et al. A review of boiling and convective heat transfer with nanofluids [J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2342-2354. |
3 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI [J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
4 | Fedorov A G, Viskanta R. Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging [J]. International Journal of Heat and Mass Transfer, 2000, 43(3): 399-415. |
5 | Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume [J]. International Journal of Heat and Mass Transfer, 1997, 40(4): 799-816. |
6 | Bejan A, Lorente S. Design with Constructal Theory [M]. New Jersey: John Wiley & Sons, 2008. |
7 | Bejan A. The Physics of Life: The Evolution of Everything [M]. New York: St. Martin􀆳s Press, 2016. |
8 | Lorente S. The constructal law: from microscale to urban-scale design [J]. Annual Review Heat Transfer, 2017, 19(8): 335-368. |
9 | Almerbati A, Lorente S, Bejan A. The evolutionary design of cooling a plate with one stream [J]. International Journal of Heat and Mass Transfer, 2018, 116: 9-15. |
10 | Bejan A. Constructal law, twenty years after [J]. Proceedings of the Romanian Academy, Series A, Mathematics, Physics, Technical Science, Information Science, 2018, 18(Spec. issue): 309-311. |
11 | Chen L G, Xiao Q H, Feng H J. Constructal optimizations for heat and mass transfers based on the entransy dissipation extremum principle, performed at the Naval University of Engineering: a review [J]. Entropy, 2018, 20(1): 74-88. |
12 | Wechsatol W, Lorente S, Bejan A. Tree-shaped insulated designs for the uniform distribution of hot water over an area [J]. International Journal of Heat and Mass Transfer, 2001, 44(16): 3111-3123. |
13 | Gosselin L, Bejan A. Emergence of asymmetry in constructal tree flow networks [J]. Journal of Applied Physics, 2005, 98(10): 104903. |
14 | Arion V, Cojocari A, Bejan A. Constructal tree shaped networks for the distribution of electrical power [J]. Energy Conversion & Management, 2003, 44(6): 867-891. |
15 | Merkx G W, Jean-Christophe D. Constructal Theory of Social Dynamics [M]. Berlin: Springer, 2007. |
16 | Reis A H, Bejan A. Constructal theory of global circulation and climate [J]. International Journal of Heat & Mass Transfer, 2006, 49(11/12): 1857-1875. |
17 | Bejan A, Lorente S. The constructal law of design and evolution in nature [J]. Philosophical Transactions of the Royal Society of London, 2010, 365(1545): 1335-1347. |
18 | Pan M Q, Wu Q Y, Jiang L B, et al. Effect of microchannel structure on the reaction performance of methanol steam reforming [J]. Applied Energy, 2015, 154: 416-427. |
19 | Wechsatol W, Lorente S, Bejan A. Dendritic heat convection on a disc [J]. International Journal of Heat and Mass Transfer, 2003, 46(23): 4381-4391. |
20 | Ramiar A, Ranjbar A A, Hosseinizadeh S F. Effect of axial conduction and variable properties on two-dimensional conjugate heat transfer of Al2O3-EG/water mixture nanofluid in microchannel [J]. Journal of Applied Fluid Mechanics, 2012, 5: 79-87. |
21 | Kaya F. Numerical investigation of effects of ramification length and angle on pressure drop and heat transfer in a ramified microchannel [J]. Journal of Applied Fluid Mechanics, 2016, 9: 767-772. |
22 | Bello-Ochende T, Liebenberg L, Meyer J P. Constructal cooling channels for micro-channel heat sinks [J]. International Journal of Heat and Mass Transfer, 2007, 50(21/22): 4141-4150. |
23 | Ghaedamini H, Salimpour M R, Campo A. Constructal design of reverting microchannels for convective cooling of a circular disc [J]. International Journal of Thermal Sciences, 2011, 50(6): 1051-1061. |
24 | Tao D, Yan R, Zhang G D, et al. Novel leaf-like channels for cooling rectangular lithium ion batteries [J]. Applied Thermal Engineering, 2019, 150: 1186-1196. |
25 | 翟玉玲, 夏国栋, 刘献飞, 等. 复杂结构微通道热沉液体强化传热过程的热力学分析[J]. 化工学报, 2014, 65(9): 3403-3409. |
Zhai Y L, Xia G D, Liu X F, et al. Thermodynamic analysis of enhanced heat transfer process in microchannel heat sinks with complex structure [J]. CIESC Journal, 2014, 65(9): 3403-3409. | |
26 | Tan H, Wu L W, Wang M Y, et al. Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling [J]. International Journal of Heat and Mass Transfer, 2019, 129: 681-689. |
27 | Huo Y T, Rao Z H, Liu X J, et al. Investigation of power battery thermal management by using mini-channel cold plate [J]. Energy Conversion & Management, 2015, 89: 387-395. |
28 | Zhang T S, Gao Q, Wang G H, et al. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process [J]. Applied Thermal Engineering, 2017, 116: 655-662. |
29 | 王亮, 谢志辉, 孙丰瑞, 等. 高热通量回流式圆盘热沉构形设计中的应力-形变分析[J]. 节能, 2018, 37(12): 53-59. |
Wang L, Xie Z H, Sun F R, et al. Stress-deformation analysis in the constructal design of reverting microchannel circular heat sink with high heat flux [J]. Energy Conservation, 2018, 37(12): 53-59. | |
30 | 王亮, 谢志辉, 孙丰瑞, 等. 基于多物理场耦合计算的正六边形微通道热沉构形研究[J]. 中国科学(技术科学), 2019, 49(7): 741-752. |
Wang L, Xie Z H, Sun F R, et al. Constructal studies on hexagonal microchannel heat sinks based on multi-physics field coupling calculations [J]. Scientia Sinica Technologica, 2019, 49(7): 741-752. | |
31 | 李勇铜, 巩亮, 徐明海, 等. 金属泡沫复合微肋微通道热沉的流动传热特性分析[J]. 科学通报, 2019, 64: 215-222. |
Li Y T, Gong L, Xu M H, et al. Thermal hydraulic performance of micro-channel heat sink with composite metal foam-solid fin design [J]. Chinese Science Bulletin, 2019, 64: 215-222. | |
32 | 郭丁彰, 黄心悦, 李平. 布置带劈缝球凸结构微通道热沉内流动和换热特性[J]. 科学通报, 2019, 64(14): 1526-1534. |
Guo D Z, Huang X Y, Li P. Flow structure and heat transfer characteristics of microchannel heat sinks with split protrusion [J]. Chinese Science Bulletin, 2019, 64(14): 1526-1534. | |
33 | Farzaneh M, Salimpour M R, Tavakoli M R. Design of bifurcating microchannels with/without loops for cooling of square-shaped electronic components [J]. Applied Thermal Engineering, 2016, 108: 581-595. |
34 | Wang X Q, Yap C, Mujumdar A S. Laminar heat transfer in constructal microchannel networks with loops [J]. Journal of Electronic Packaging, 2006, 128(3): 273-280. |
35 | Guo Z Y, Zhu H Y, Liang X G. Entransy — a physical quantity describing heat transfer ability [J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2545-2556. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[4] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[7] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[8] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[12] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[13] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||