1 |
Song H M, Chen C, Shui X X, et al. Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation[J]. Journal of Membrane Science, 2019, 573: 126-134.
|
2 |
Li Y, Zhang G, Gao A, et al. Robust graphene/poly(vinyl alcohol) Janus aerogels with a hierarchical architecture for highly efficient switchable separation of oil/water emulsions[J]. ACS Applied Materials and Interfaces, 2019, 11(40): 36638-36648.
|
3 |
Jiang B, Chen Z X, Dou H Z, et al. Superhydrophilic and underwater superoleophobic Ti foam with fluorinated hierarchical flower-like TiO2 nanostructures for effective oil-in-water emulsion separation[J]. Applied Surface Science, 2018, 456: 114-123.
|
4 |
Ismail N H, Salleh W N W, Ismail A F, et al. Hydrophilic polymer-based membrane for oily wastewater treatment: a review[J]. Separation And Purification Technology, 2020, 233: 116007.
|
5 |
Wang J R, Wang X F, Zhao S, et al. Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation ·with high flux, self-cleaning, photodegradation and anti-corrosion[J]. Separation and Purification Technology,2020, 235: 1383-5866.
|
6 |
Tezcan U U, Koparal A S, Bakir O U. Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes[J]. Journal of Environmental Management, 2009, 90(1): 428-433.
|
7 |
Al Hawli B, Benamor A, Hawari A. A hybrid electro-coagulation/ forward osmosis system for treatment of produced water[J]. Chemical Engineering and Processing - Process Intensification, 2019, 143: 107621.
|
8 |
Rastegar S O, Mousavi S M, Shojaosadati S A, et al. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology[J]. Journal of Hazardous Materials, 2011, 197: 26-32.
|
9 |
Wu L, Ge G, Wan J. Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29[J]. Journal of Environmental Sciences, 2009, 21(2): 237-242.
|
10 |
Adebajo M O, Frost R L, Kloprogge J T, et al. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties[J]. Journal of Porous Materials, 2003, 10(3): 159-170.
|
11 |
Sabouri M R, Javanbakht V, Ghotbabadi D J, et al. Oily wastewater treatment by a magnetic superoleophilic nanocomposite foam[J]. Process Safety and Environmental Protection, 2019, 126: 182-192.
|
12 |
Ge D T, Yang L L, Wang C B, et al. A multi-functional oil-water separator from a selectively pre-wetted superamphiphobic paper[J]. Chemical Communications, 2015, 51(28): 6149-6152.
|
13 |
Li H, Zhou C P, Li C S, et al. Superhydrophilic fluorinated polyarylate membranes viain situ photocopolymerization and microphase separation for efficient separation of oil-in-water emulsion[J]. RSC Advances, 2019, 9(2): 958-962.
|
14 |
任六一, 赵颂, 王志, 等. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486.
|
|
Ren L Y, Zhao S, Wang Z,et al. Research progress of antifouling aromatic polyamide reverse osmosis membrane[J]. CIESC Journal, 2020, 71(2): 475-486.
|
15 |
Xu X, Long Y W, Li Q, et al. Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment[J]. Journal of Cleaner Production, 2019, 211: 1463-1470.
|
16 |
Kang H, Liu Y, Lai H, et al. Under-oil switchable superhydrophobicity to superhydrophilicity transition on TiO2 nanotube arrays[J]. ACS Nano, 2018, 12(2): 1074-1082.
|
17 |
Sun Y H, Liu M M, Guo Z G. Ag nanoparticles loading of polypyrrole-coated superwetting mesh for on-demand separation of oil-water mixtures and catalytic reduction of aromatic dyes[J]. Journal of Colloid and Interface Science, 2018, 527: 187-194.
|
18 |
Zheng X, Liu X, Zha L. Under‐oil superhydrophilic poly(vinyl alcohol)/ silica hybrid nanofibrous aerogel for gravity‐driven separation of surfactant‐stabilized water-in-oil emulsions[J]. Macromolecular Materials and Engineering, 2019, 304(7): 1900125.
|
19 |
Cai D L, Ma P C. Hydrogel-coated basalt fibre with superhydrophilic and underwater superoleophobic performance for oil-water separation[J]. Composites Communications, 2019, 14: 1-6.
|
20 |
Gu H H, Li G Q, Li P P, et al. Superhydrophobic and breathable SiO2 polyurethane porous membrane for durable water repellent application and oil-water separation[J]. Applied Surface Science, 2020, 512: 144837.
|
21 |
Sun M H, Luo C X, Xu L P, et al. Artificial lotus leaf by nanocasting[J]. Langmuir, 2005, 21(19): 8978-8981.
|
22 |
Feng L, Zhang Y N, Xi J M, et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24: 4114-4119.
|
23 |
Chen Y, Wang H, Yao Q, et al. Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance[J]. Journal of Materials Science, 2017, 52(12): 7428-7438.
|
24 |
Boinovich L B, Modin E B, Sayfutdinova A R, et al. Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties[J]. ACS Nano, 2017, 11(10): 10113-10123.
|
25 |
Siddiqui A R, Maurya R, Balani K. Superhydrophobic self-floating carbon nanofiber coating for efficient gravity-directed oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(6): 2936-2946.
|
26 |
Khan A, Huang K, Hu M, et al. Wetting behavior of metal-catalyzed chemical vapor deposition-grown one-dimensional cubic-SiC nanostructures[J]. Langmuir, 2018, 34(18): 5214-5224.
|
27 |
Doshi D A, Shah P B, Singh S, et al. Investigating the Interface of Superhydrophobic Surfaces in Contact with Water[J]. Langmuir, 2005, 21: 7805-7811.
|
28 |
Cho K H, Chen L J. Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates[J]. Nanotechnology, 2011, 22(44): 445706.
|
29 |
Khanjani P, King A W T, Partl G J, et al. Superhydrophobic paper from nanostructured fluorinated cellulose esters[J]. ACS Applied Materials and Interfaces, 2018, 10(13): 11280-11288.
|
30 |
Yu T L, Lu S X, Xu W G, et al. Preparation of superhydrophobic/ superoleophilic copper coated titanium mesh with excellent ice-phobic and water-oil separation performance[J]. Applied Surface Science, 2019, 476: 353-362.
|
31 |
Xu W G, Liu H Q, Lu S X, et al. Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates[J]. Langmuir, 2008, 24(19): 10895-10900.
|
32 |
Pan Y, Liu L, Zhang Z, et al. Surfaces with controllable super-wettability and applications for smart oil-water separation[J]. Chemical Engineering Journal, 2019, 378: 122178.
|
33 |
李希鹏. 超浸润复合膜材料的制备及其在油水分离中的应用研究[D]. 天津: 天津大学, 2020.
|
|
Li X P. Preparation of superwetting composite membrane for the application of oil/water separation[D]. Tianjin: Tianjin University, 2020.
|
34 |
谷金翠, 张磊, 张佳玮, 等. 二维碳基薄膜及其高分子复合材料的构筑和油水分离性能研究进展[J]. 科学通报, 2019, 64(22): 2316-2331.
|
|
Gu J C, Zhang L, Zhang J W, et al. Recent advance of two-dimensional carbon-based films and their polymer functionalized membranes for oil/water separation[J]. Chinese Science Bulletin, 2019, 64(22): 2316-2331.
|
35 |
Wang H, Hu X, Ke Z, et al. Review: porous metal filters and membranes for oil-water separation[J]. Nanoscale Research Letters, 2018, 13(1): 284.
|
36 |
Bu Y, Huang J, Zhang S, et al. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation[J]. Applied Surface Science, 2018, 440: 535-546.
|
37 |
Xiong Z, Lin H, Liu F, et al. Flexible PVDF membranes with exceptional robust superwetting surface for continuous separation of oil/water emulsions[J]. Scientific Reports, 2017, 7(1): 14099.
|
38 |
Nam H J, Kim Y M, Kwon Y H, et al. Enamel surface remineralization effect by fluorinated graphite and bioactive glass-containing orthodontic bonding resin[J]. Materials, 2019, 12(8): E1308.
|
39 |
He H M, Gao L, Yang X J, et al. Studies on the superhydrophobic properties of polypropylene/ polydimethylsiloxane/ graphite fluoride composites[J]. Journal of Fluorine Chemistry, 2013, 156: 158-163.
|
40 |
Li Y, Ge B, Men X, et al. A facile and fast approach to mechanically stable and rapid self-healing waterproof fabrics[J]. Composites Science and Technology, 2016, 125: 55-61.
|
41 |
Cheng S H, Zou K, Okino F, et al. Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor[J]. Physical Review B, 2010, 81(20): 1-5
|
42 |
Chang H, Cheng J, Liu X, et al. Facile synthesis of wide-bandgap fluorinated graphene semiconductors[J]. Chemistry, 2011, 17(32): 8896-8903.
|
43 |
康文泽, 李尚益, 刘玉. 氧化法制备氟化石墨烯及其性能研究[J]. 炭素技术, 2018, 37(2): 32-36.
|
|
Kang W Z, Li S Y, Liu Y. Preparation of fluorinated graphene by oxidation method[J]. Carbon Techniques, 2018, 37(2): 32-36.
|
44 |
Sun T L, Feng L, Gao X F, et al. Bioinspired surfaces with special wettability[J]. Accounts of Chemical Research, 2005, 38(8): 644-652.
|
45 |
Subhash L S, Basavraj G A, Shridhar M C, et al. Recent progress in preparation of superhydrophobic surfaces: a review[J]. Journal of Surface Engineered Materials and Advanced Technology, 2012, 2(2): 76-94.
|
46 |
Ensikat H J, Mayser M, Barthlott W. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method[J]. Langmuir, 2012, 28(40): 14338-14346.
|