化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1372-1381.DOI: 10.11949/0438-1157.20200713
收稿日期:
2020-06-05
修回日期:
2020-09-03
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
周亚松
作者简介:
魏强(1979—),男,博士,副教授,基金资助:
WEI Qiang(),HUANG Wenbin,ZHOU Yasong()
Received:
2020-06-05
Revised:
2020-09-03
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHOU Yasong
摘要:
采用等体积浸渍法制备了一系列以γ-Al2O3及磷改性γ-Al2O3为载体,Ni、W为活性金属组分的加氢催化剂,以N2物理吸附-脱附、XRD、NH3-TPD、Py-IR等技术对Al2O3及P/Al2O3系列催化剂进行了表征,考察了磷改性对加氢催化剂理化性质的影响,探究了喹啉、吲哚和二苯并噻吩(DBT)吸附行为与催化剂理化性质以及吸附质本身性质的关系。研究发现,喹啉最易于吸附在Al2O3及P/Al2O3系列催化剂上,吲哚和DBT的吸附能力较为接近;磷的引入会降低催化剂的比表面积和孔体积,但是能够提高喹啉、吲哚及DBT的吸附能力;硫氮化合物在催化剂上的吸附能力随着催化剂表面酸性的增强或酸中心数量的增多、活性金属分散度的增大以及硫氮化合物杂原子电子云密度或分子极性的增大而增大。
中图分类号:
魏强, 黄文斌, 周亚松. 硫氮化合物在磷改性NiW/Al2O3加氢催化剂上的吸附行为研究[J]. 化工学报, 2021, 72(3): 1372-1381.
WEI Qiang, HUANG Wenbin, ZHOU Yasong. Research on adsorption behavior of sulfur and nitrogen compounds on P modified NiW/Al2O3 catalyst[J]. CIESC Journal, 2021, 72(3): 1372-1381.
催化剂 | 比表面积/ (m2·g-1) | 孔体积/ (ml·g-1) | 平均孔径/nm |
---|---|---|---|
Al2O3 | 278.9 | 0.61 | 6.4 |
Ni/Al2O3 | 252.8 | 0.57 | 6.5 |
W/Al2O3 | 208.2 | 0.43 | 6.0 |
NiW/Al2O3 | 186.7 | 0.38 | 5.9 |
P/Al2O3 | 251.1 | 0.60 | 6.9 |
Ni/P/Al2O3 | 240.0 | 0.55 | 6.8 |
W/P/Al2O3 | 190.4 | 0.39 | 6.8 |
NiW/P/Al2O3 | 173.0 | 0.35 | 6.9 |
表1 Al2O3及P/Al2O3系列催化剂孔结构性质
Table 1 Pore structure of Al2O3 catalysts and P/Al2O3 catalysts
催化剂 | 比表面积/ (m2·g-1) | 孔体积/ (ml·g-1) | 平均孔径/nm |
---|---|---|---|
Al2O3 | 278.9 | 0.61 | 6.4 |
Ni/Al2O3 | 252.8 | 0.57 | 6.5 |
W/Al2O3 | 208.2 | 0.43 | 6.0 |
NiW/Al2O3 | 186.7 | 0.38 | 5.9 |
P/Al2O3 | 251.1 | 0.60 | 6.9 |
Ni/P/Al2O3 | 240.0 | 0.55 | 6.8 |
W/P/Al2O3 | 190.4 | 0.39 | 6.8 |
NiW/P/Al2O3 | 173.0 | 0.35 | 6.9 |
催化剂 | 200℃脱附 | 350℃脱附 | 弱酸中心数量 (L酸)/(μmol·g-1) | ||
---|---|---|---|---|---|
L酸/(μmol·g-1) | B酸/(μmol·g-1) | L酸/(μmol·g-1) | B酸/(μmol·g-1) | ||
NiW/Al2O3 | 308.5 | 30.1 | 183.1 | 17.3 | 125.4 |
NiW/P/Al2O3 | 562.7 | 53.1 | 330.5 | 30.5 | 232.2 |
表2 Al2O3及P/Al2O3系列催化剂的酸性质
Table 2 Acid property of Al2O3 catalysts and P/Al2O3 catalysts
催化剂 | 200℃脱附 | 350℃脱附 | 弱酸中心数量 (L酸)/(μmol·g-1) | ||
---|---|---|---|---|---|
L酸/(μmol·g-1) | B酸/(μmol·g-1) | L酸/(μmol·g-1) | B酸/(μmol·g-1) | ||
NiW/Al2O3 | 308.5 | 30.1 | 183.1 | 17.3 | 125.4 |
NiW/P/Al2O3 | 562.7 | 53.1 | 330.5 | 30.5 | 232.2 |
催化剂 | 比表面积/ (m2·g-1) | 喹啉平衡吸附量/(μg·m-2) | 吲哚平衡吸附量/(μg·m-2) |
---|---|---|---|
Al2O3 | 278.9 | 10.43 | 6.42 |
Ni/Al2O3 | 252.8 | 9.57 | 6.32 |
W/Al2O3 | 208.2 | 16.09 | 9.60 |
NiW/Al2O3 | 186.7 | 18.69 | 11.78 |
P/Al2O3 | 251.1 | 11.83 | 7.17 |
Ni/P/Al2O3 | 240.0 | 11.67 | 6.67 |
W/P/Al2O3 | 190.4 | 20.17 | 11.03 |
NiW/P/Al2O3 | 173.0 | 25.16 | 13.87 |
表3 喹啉和吲哚在Al2O3及P/Al2O3系列催化剂的平衡吸附量
Table 3 Equilibrium adsorption capacity of quinoline and indole on Al2O3 catalysts and P/Al2O3 catalysts
催化剂 | 比表面积/ (m2·g-1) | 喹啉平衡吸附量/(μg·m-2) | 吲哚平衡吸附量/(μg·m-2) |
---|---|---|---|
Al2O3 | 278.9 | 10.43 | 6.42 |
Ni/Al2O3 | 252.8 | 9.57 | 6.32 |
W/Al2O3 | 208.2 | 16.09 | 9.60 |
NiW/Al2O3 | 186.7 | 18.69 | 11.78 |
P/Al2O3 | 251.1 | 11.83 | 7.17 |
Ni/P/Al2O3 | 240.0 | 11.67 | 6.67 |
W/P/Al2O3 | 190.4 | 20.17 | 11.03 |
NiW/P/Al2O3 | 173.0 | 25.16 | 13.87 |
催化剂 | 比表面积/ (m2·g-1) | DBT平衡吸附量/(μg·m-2) | DBT饱和吸附量/(mg·g-1) |
---|---|---|---|
Al2O3 | 278.9 | 7.35 | 2.05 |
Ni/Al2O3 | 252.8 | 7.31 | 1.85 |
W/Al2O3 | 208.2 | 11.71 | 2.33 |
NiW/Al2O3 | 186.7 | 11.42 | 2.13 |
P/Al2O3 | 251.1 | 8.36 | 2.10 |
Ni/P/Al2O3 | 240.0 | 7.79 | 1.87 |
W/P/Al2O3 | 190.4 | 11.82 | 2.25 |
NiW/P/Al2O3 | 173.0 | 13.35 | 2.31 |
表4 DBT在Al2O3及P/Al2O3系列催化剂的平衡吸附量
Table 4 Equilibrium adsorption capacity of DBT on Al2O3 catalysts and P/Al2O3 catalysts
催化剂 | 比表面积/ (m2·g-1) | DBT平衡吸附量/(μg·m-2) | DBT饱和吸附量/(mg·g-1) |
---|---|---|---|
Al2O3 | 278.9 | 7.35 | 2.05 |
Ni/Al2O3 | 252.8 | 7.31 | 1.85 |
W/Al2O3 | 208.2 | 11.71 | 2.33 |
NiW/Al2O3 | 186.7 | 11.42 | 2.13 |
P/Al2O3 | 251.1 | 8.36 | 2.10 |
Ni/P/Al2O3 | 240.0 | 7.79 | 1.87 |
W/P/Al2O3 | 190.4 | 11.82 | 2.25 |
NiW/P/Al2O3 | 173.0 | 13.35 | 2.31 |
催化剂 | 比表面积/(m2·g-1) | 喹啉平衡 吸附量/ (μg·m-2) | 吲哚平衡 吸附量/ (μg·m-2) | DBT平衡 吸附量/ (μg·m-2) |
---|---|---|---|---|
NiW/Al2O3 | 186.7 | 17.70 | 10.96 | 10.22 |
NiW/P/Al2O3 | 173.0 | 24.15 | 13.17 | 12.96 |
表5 喹啉、吲哚及DBT在NiW/Al2O3及NiW/P/Al2O3催化剂上的平衡吸附量
Table 5 Equilibrium adsorption capacity of quinoline, indole and DBT on NiW/Al2O3 catalysts and NiW/P/Al2O3 catalysts
催化剂 | 比表面积/(m2·g-1) | 喹啉平衡 吸附量/ (μg·m-2) | 吲哚平衡 吸附量/ (μg·m-2) | DBT平衡 吸附量/ (μg·m-2) |
---|---|---|---|---|
NiW/Al2O3 | 186.7 | 17.70 | 10.96 | 10.22 |
NiW/P/Al2O3 | 173.0 | 24.15 | 13.17 | 12.96 |
吸附质 | 喹啉 | 吲哚 | DBT |
---|---|---|---|
分子偶极矩/Debye | 1.869 | 1.886 | 0.475 |
HOMO轨道特征值/eV | -5.856 | -4.972 | -5.179 |
C—N/C—S键键长/? | 1.374 | 1.388 | 1.765 |
表6 喹啉、吲哚及DBT的分子结构特点
Table 6 Structural characteristics of quinoline, indole and DBT
吸附质 | 喹啉 | 吲哚 | DBT |
---|---|---|---|
分子偶极矩/Debye | 1.869 | 1.886 | 0.475 |
HOMO轨道特征值/eV | -5.856 | -4.972 | -5.179 |
C—N/C—S键键长/? | 1.374 | 1.388 | 1.765 |
1 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009: 277-280. |
Xu C M, Yang C H. Petroleum Refining Engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 277-280. | |
2 | Han W, Nie H, Long X Y, et al. Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support Brønsted acidity on HDN activity[J]. Journal of Catalysis, 2016, 339: 135-142. |
3 | Wei Q, Wen S C, Tao X J, et al. Hydrodenitrogenation of basic and non-basic nitrogen-containing compounds in coker gas oil[J]. Fuel Processing Technology, 2015, 129: 76-84. |
4 | Yik E, Iglesia E. Mechanism and site requirements for thiophene hydrodesulfurization on supported Re domains in metal or sulfide form[J]. Journal of Catalysis, 2018, 368: 411-426. |
5 | Zhou W W, Zhang Y N, Tao X J, et al. Effects of gallium addition to mesoporous alumina by impregnation on dibenzothiophene hydrodesulfurization performances of the corresponding NiMo supported catalysts[J]. Fuel, 2018, 228: 152-163. |
6 | Vázquez-Garrido I, López-Benítez A, Berhault G, et al. Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions[J]. Fuel, 2019, 236: 55-64. |
7 | Prado G H C, Rao Y, de Klerk A. Nitrogen removal from oil: a review[J]. Energy & Fuels, 2017, 31(1): 14-36. |
8 | Bachrach M, Marks T J, Notestein J M. Understanding the hydrodenitrogenation of heteroaromatics on a molecular level[J]. ACS Catalysis, 2016, 6(3): 1455-1476. |
9 | Gutiérrez O Y, Singh S, Schachtl E, et al. Effects of the support on the performance and promotion of (Ni)MoS2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization[J]. ACS Catalysis, 2014, 4(5): 1487-1499. |
10 | Guo K, Ding Y, Yu Z X. One-step synthesis of ultrafine MoNiS and MoCoS monolayers as high-performance catalysts for hydrodesulfurization and hydrodenitrogenation[J]. Applied Catalysis B: Environmental, 2018, 239: 433-440. |
11 | Albersberger S, Shi H, Wagenhofer M, et al. On the enhanced catalytic activity of acid-treated, trimetallic Ni-Mo-W sulfides for quinoline hydrodenitrogenation[J]. Journal of Catalysis, 2019, 380: 332-342. |
12 | Pereyma V Y, Klimov O V, Prosvirin I P, et al. Effect of thermal treatment on morphology and catalytic performance of NiW/Al2O3 catalysts prepared using citric acid as chelating agent[J]. Catalysis Today, 2018, 305: 162-170. |
13 | Dorneles de Mello M, de Almeida-Braggio F, da Costa-Magalhães B, et al. Effects of phosphorus content on simultaneous ultradeep HDS and HDN reactions over NiMoP/Alumina catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56: 10287-10299. |
14 | Tong R L, Wang Y G, Zhang X, et al. Effect of phosphorus modification on the catalytic properties of NiW/γ-Al2O3 in the hydrogenation of aromatics from coal tar[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12): 1461-1469. |
15 | Tao X J, Zhou Y S, Wei Q, et al. Inhibiting effects of nitrogen compounds on deep hydrodesulfurization of straight-run gas oil over a NiW/Al2O3 catalyst[J]. Fuel, 2017, 188: 401-407. |
16 | 王倩, 龙湘云, 聂红. 氮化物对NiW/Al2O3上DBT和4, 6-DMDBT加氢脱硫反应活性的影响[J]. 石油炼制与化工, 2011, 42(4): 30-34. |
Wang Q, Long X Y, Nie H. Effect of nitrogen compounds on the hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene over alumina-supported NiW catalyst[J]. Petroleum Processing and Petrochemicals, 2011, 42(4): 30-34. | |
17 | Zhang H, Li G, Jia Y H, et al. Adsorptive removal of nitrogen-containing compounds from fuel[J]. Journal of Chemical & Engineering Data, 2010, 55(1): 173-177. |
18 | Xiang C E, Chai Y M, Fan J, et al. Effect of phosphorus on the hydrodesulfurization and hydrodenitrogenation performance of presulfided NiMo/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2011, 39(5): 355-360. |
19 | Reinhoudt H R, Troost R, van Langeveld A D, et al. The nature of the active phase in sulfided NiW/γ-Al2O3 in relation to its catalytic performance in hydrodesulfurization reactions[J]. Journal of Catalysis, 2001, 203(2): 509-515. |
20 | Yu G L, Zhou Y S, Wei Q, et al. A novel method for preparing well dispersed and highly sulfided NiW hydrodenitrogenation catalyst[J]. Catalysis Communications, 2012, 23: 48-53. |
21 | Wang H, Fan Y, Shi G, et al. Highly dispersed NiW/γ-Al2O3 catalyst prepared by hydrothermal deposition method[J]. Catalysis Today, 2007, 125(3/4): 149-154. |
22 | Fang M X, Ma S, Wang T, et al. Hydrotreatment of model compounds with catalysts of NiW/Al2O3 and NiWP/Al2O3 to simulate low temperature coal tar oil[J]. RSC Advances, 2017, 7(86): 54512-54521. |
23 | 罗怡, 周亚松, 魏强, 等. 磷、柠檬酸改性对MoW/Ni/Al2O3催化剂性质及加氢脱氮性能的影响[J]. 化工学报, 2014, 65(10): 3916-3923. |
Luo Y, Zhou Y S, Wei Q, et al. Effect of citric acid and phosphorus on properties and hydrodenitrogenation performance of MoW/Ni/Al2O3 catalysts[J]. CIESC Journal, 2014, 65(10): 3916-3923. | |
24 | Ding S J, Jiang S J, Zhou Y S, et al. Oxygen effects on the structure and hydrogenation activity of the MoS2 active site: a mechanism study by DFT calculation[J]. Fuel, 2017, 194: 63-74. |
25 | López-Benítez A, Guevara-Lara A, Berhault G. Nickel-containing polyoxotungstates based on [PW9O34]9- and [PW10O39]13- keggin lacunary anions supported on Al2O3 for dibenzothiophene hydrodesulfurization application[J]. ACS Catalysis, 2019, 9(8): 6711-6727. |
26 | Wei Z Z, Chen Y Q, Wang J, et al. Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds[J]. ACS Catalysis, 2016, 6(9): 5816-5822. |
27 | 徐永强, 董晓芳, 赵会吉, 等. 二苯并噻吩在γ-Al2O3上分散状态及吸附状态的研究[J]. 石油学报(石油加工), 2003, (1): 12-16. |
Xu Y Q, Dong X F, Zhao H J, et al. Studies on dispersion and adsorption states of dibenzothiophene on γ-Al2O3[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2003, (1): 12-16. | |
28 | Braggio F A, Mello M D, Magalhaes B C, et al. Effects of citric acid addition method on the activity of NiMo/γ-Al2O3 catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions[J]. Energy & Fuels, 2019, 33(2): 1450-1457. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[7] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[8] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[9] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[10] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[11] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[12] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[13] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[14] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[15] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||