化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2267-2275.DOI: 10.11949/0438-1157.20201133
收稿日期:
2020-08-10
修回日期:
2020-11-14
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
李立硕
作者简介:
黄中艺(1992—),女,硕士研究生,基金资助:
HUANG Zhongyi1(),SHI Liubin1,FENG Yajun1,LI Lishuo1,2()
Received:
2020-08-10
Revised:
2020-11-14
Online:
2021-04-05
Published:
2021-04-05
Contact:
LI Lishuo
摘要:
生物质是可再生能源的理想原料,由于生物质有坚硬的木质素外壳保护而难以被有效利用。离子液体(IL)是一种绿色溶剂,可用于木质纤维素预处理从而提高其利用的效率。为了研究IL水溶液预处理对桉木热解产半焦的结构及其反应性的影响,将桉木粉经2%、4%和8%(质量)离子液体([Bmim]Cl、[Bmim]OAc和[Bmim]H2PO4)水溶液在120℃下预处理2 h,然后将预处理后的桉木粉在650℃下热解。采用SEM、FTIR、XRD和Raman分析表征热解半焦的结构变化,利用热重分析仪(TGA)测定半焦与空气在450℃下的反应性。结果表明,随着预处理IL浓度的增加,半焦产率下降,半焦的晶化程度提高,在拉曼光谱中,ID1/IG变小,IG/Iall变大,这表明IL预处理使半焦结构有序增大,并促进半焦中小芳香环向大芳香环聚并,因而降低了半焦的反应性。IL预处理可便捷调节热解半焦的反应性,为生物质的高值化利用提供有效的制备方法。
中图分类号:
黄中艺, 史刘宾, 冯亚军, 李立硕. 离子液体预处理对桉木热解半焦结构和反应性的影响[J]. 化工学报, 2021, 72(4): 2267-2275.
HUANG Zhongyi, SHI Liubin, FENG Yajun, LI Lishuo. Effect of ionic liquid pretreatment on eucalyptus char structure and its reactivity[J]. CIESC Journal, 2021, 72(4): 2267-2275.
1 | 孟晓晓, 孙锐, 袁皓, 等. 不同热解温度下玉米秸秆中碱金属K和Na的释放及半焦中赋存特性[J]. 化工学报, 2017, 68(4): 1600-1607. |
Meng X X, Sun R, Yuan H, et al. Effect of different pyrolysis temperature on alkali metal K and Na emission and existence in semi-char [J]. CIESC Journal, 2017, 68(4): 1600-1607. | |
2 | 刘德军, 王尤清, 于淑娟, 等. 提高焦炭热态性能的钝化处理技术研究[J]. 中国冶金, 2006, 16(12): 27-30. |
Liu D J, Wang Y Q, Yu S J, et al. Research on passivation treating technology for improving thermal properties of coke[J]. China Metallurgy, 2006, 16(12): 27-30. | |
3 | Keown D M, Hayashi J, Li C. Drastic changes in biomass char structure and reactivity upon contact with steam[J]. Fuel, 2008, 87: 1127-1132. |
4 | Tilghman M B, Mitchell R E. Coal and biomass char reactivities in gasification and combustion environments[J]. Combustion and Flame, 2015, 162(9): 3220-3235. |
5 | Surup G R, Foppe M, Schubert D, et al. The effect of feedstock origin and temperature on the structure and reactivity of char from pyrolysis at 1300—2800℃[J]. Fuel, 2019, 235: 306-316. |
6 | Wang G, Zhang J, Chang W, et al. Structural features and gasification reactivity of biomass chars pyrolyzed in different atmospheres at high temperature[J]. Energy, 2018, 147: 25-35. |
7 | Septien S, Escudero Sanz F J, Salvador S, et al. The effect of pyrolysis heating rate on the steam gasification reactivity of char from woodchips[J]. Energy, 2018, 142: 68-78. |
8 | Yu Y, Kong J, Wang M, et al. Structure and oxidation reactivity of char: effects of pyrolysis heating rate and pressure[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1025-1035. |
9 | Qi X, Guo X, Xue L, et al. Effect of iron on Shenfu coal char structure and its influence on gasification reactivity[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 401-407. |
10 | Li N, Te G, Liu Q, et al. Effect of metal ions on the steam gasification performance of demineralized Shengli lignite char[J]. International Journal of Hydrogen Energy, 2016, 41(48): 22837-22845. |
11 | Lu R, Wang J, Liu Q, et al. Catalytic effect of sodium components on the microstructure and steam gasification of demineralized Shengli lignite char[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9679-9687. |
12 | Zhang X, Wang J, Liu Q, et al. The Effects of sodium and alkalinity on the microcrystalline structure and the steam gasification performance of Shengli lignite[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 227-233. |
13 | Verdía P, Brandt A, Hallett J P, et al. Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate[J]. Green Chemistry, 2014, 16(3): 1617-1627. |
14 | Ninomiya K, Inoue K, Aomori Y, et al. Characterization of fractionated biomass component and recovered ionic liquid during repeated process of cholinium ionic liquid-assisted pretreatment and fractionation[J]. Chemical Engineering Journal, 2015, 259: 323-329. |
15 | Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids[J]. J. Am. Chem. Soc., 2002, 124: 4974-4975. |
16 | Elgharbawy A A, Alam M Z, Moniruzzaman M, et al. Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass[J]. Biochemical Engineering Journal, 2016, 109: 252-267. |
17 | Ma H, Zhang B, Zhang P, et al. An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids[J]. Fuel Processing Technology, 2016, 148: 138-145. |
18 | Khan A S, Man Z, Bustam M A, et al. Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids[J]. Carbohydrate Polymers, 2018, 181: 208-214. |
19 | Bian J, Peng F, Peng X, et al. Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose[J]. Carbohydrate Polymers, 2014, 100: 211-217. |
20 | Putro J N, Soetaredjo F E, Lin S Y, et al. Pretreatment and conversion of lignocellulose biomass into valuable chemicals[J]. RSC Adv., 2016, 6: 46834-46852. |
21 | Muhammad N, Man Z, Azmi Bustam Khalil M, et al. Studies on the thermal degradation behavior of ionic liquid regenerated cellulose[J]. Waste and Biomass Valorization, 2010, 1(3): 315-321. |
22 | Khan A S, Man Z, Bustam M A, et al. Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass[J]. Journal of Molecular Liquids, 2016, 223: 754-762. |
23 | 覃锦程, 郝学密, 刘黎阳, 等. 瞬间弹射蒸汽爆破增强离子液体对水稻秸秆的预处理效果[J]. 化工学报, 2015, 66: 302-307. |
Qin J C, Hao X M, Liu L Y, et al. Enhanced effects of ionic liquid pretreatment on rice straw by instant catapult steam explosion[J]. CIESC Journal, 2015, 66: 302-307. | |
24 | Kim H, Ahn Y, Kwak S. Comparing the influence of acetate and chloride anions on the structure of ionic liquid pretreated lignocellulosic biomass[J]. Biomass and Bioenergy, 2016, 93: 243-253. |
25 | Ninomiya K, Kohori A, Tatsumi M, et al. Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid[J]. Bioresource Technology, 2015, 176: 169-174. |
26 | Xu J, Liu B, Hou H, et al. Pretreatment of eucalyptus with recycled ionic liquids for low-cost biorefinery[J]. Bioresource Technology, 2017, 234: 406-414. |
27 | Moulthrop J S, Swatloski R P, Moyna G, et al. High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions[J]. Chem. Commun., 2005: 1557-1559. |
28 | Dawset T R, McCormick C L. The lithium chloride/dimethylacetamide solvent for cellulose: a literature review[J]. J. Macromol. Sci. Rev. Macromol. Chem. Phys., 1990, 30: 405-440. |
29 | Shim H S, Hurt R H. Thermal annealing of chars from diverse organic precursors under combustion-like conditions[J]. Energy & Fuels, 2000, 14(2): 340-348. |
30 | Quyn D M, Wu H, Li C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal(1): Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002, 81: 143-149. |
31 | Brandt A, Chen L, Dongen B E, et al. Structural changes in lignins isolated using an acidic ionic liquid water mixture[J]. Green Chemistry, 2015, 17(11): 5019-5034. |
32 | Yu J, Paterson N, Blamey J, et al. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass[J]. Fuel, 2017, 191: 140-149. |
33 | Lei Z, Hu Z, Zhang H, et al. Pyrolysis of lignite following low temperature ionic liquid pretreatment[J]. Fuel, 2016, 166: 124-129. |
34 | 陈启宇, 王青跃. 离子液体混合溶剂预处理后孟宗竹的热解[J]. 化工学报, 2015, 66(5): 1874-1882. |
Chen Q Y, Wang Q Y. Pyrolysis study of bamboo Phyllostachys edulis pretreated with ionic liquids mixtures[J]. CIESC Journal, 2015, 66(5): 1874-1882. | |
35 | Sevilla M, Fuertes A B. Fabrication of porous carbon monoliths with a graphitic framework[J]. Carbon, 2013, 56: 155-166. |
36 | Zhang J, Wang Y, Zhang L, et al. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD[J]. Bioresource Technology, 2014, 151: 402-405. |
37 | Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43: 1731-1742. |
38 | Li X, Hayashi J, Li C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707. |
39 | Beyssac O, Goff ì B, Petitet J, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2267-2276. |
40 | Zhu X L, Sheng C D. Influences of carbon structure on the reactivities of lignite char reacting with CO2 and NO [J]. Fuel Processing Technology, 2010, 91: 837-842. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[12] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[13] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[14] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[15] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 312
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 488
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||