化工学报 ›› 2021, Vol. 72 ›› Issue (8): 3968-3983.DOI: 10.11949/0438-1157.20201939
收稿日期:
2020-12-29
修回日期:
2021-01-29
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
申淑锋
作者简介:
平甜甜(1996—),女,硕士研究生,基金资助:
Tiantian PING(),Xin YIN,Yu DONG,Shufeng SHEN()
Received:
2020-12-29
Revised:
2021-01-29
Online:
2021-08-05
Published:
2021-08-05
Contact:
Shufeng SHEN
摘要:
有机胺水溶液吸收法是CO2捕集最常用且成熟的方法之一,但是再生能耗高和吸收剂严重降解等关键问题阻碍了其大规模推广和应用。采用有机溶剂代替强极性水溶剂构建的非水吸收剂体系,在降低能耗方面具有巨大潜力,在近年来受到格外关注。非水吸收剂的CO2吸收动力学研究有助于了解吸收过程的反应机理以及不同有机胺和溶剂类型对反应动力学的影响。本文从有机胺在非水溶剂中的反应机理出发,介绍了CO2吸收动力学研究的典型实验方法和原理,系统评述了采用不同结构的有机胺在不同溶剂体系中吸收CO2的动力学研究进展,深入分析了溶剂特性与胺的反应级数和反应动力学常数之间的关联性,并指出了普遍的规律性特征即有机伯胺和仲胺的反应级数随溶剂极性的降低而增大,反应速率常数随着溶剂的溶解度参数增大而呈现近似线性变化。在分析目前动力学研究中存在的问题基础上,对今后非水体系动力学的研究方向进行了展望。
中图分类号:
平甜甜, 尹鑫, 董玉, 申淑锋. 有机胺非水溶液吸收CO2的动力学研究进展[J]. 化工学报, 2021, 72(8): 3968-3983.
Tiantian PING, Xin YIN, Yu DONG, Shufeng SHEN. Research progress on reaction kinetics of CO2 with amines in nonaqueous solvents[J]. CIESC Journal, 2021, 72(8): 3968-3983.
1 | 蔡博峰, 李琦, 林千果, 等, 中国二氧化碳捕集、利用与封存(CCUS)报告(2019)[R]. 生态环境部环境规划院气候变化与环境政策研究中心, 2020. |
Cai B F, Li Q, Lin Q G, et al. China status of CO2 capture, utilization and storage (CCUS) 2019[R].Center for Climate Change and Environmental Policy,Chinese Academy of Environmental Planning, 2020. | |
2 | 米剑锋, 马晓芳. 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 39(9): 2537-2544. |
Mi J F, Ma X F. Development trend analysis of carbon capture, utilization and storage technology in China[J]. Proceedings of the CSEE, 2019, 39(9): 2537-2544. | |
3 | 林海周, 杨晖, 罗海中, 等. 烟气二氧化碳捕集胺类吸收剂研究进展[J]. 南方能源建设, 2019, 6(1): 16-21. |
Lin H Z, Yang H, Luo H Z, et al. Research progress on amine absorbent for CO2 capture from flue gas[J]. Southern Energy Construction, 2019, 6(1): 16-21. | |
4 | 郭超, 陈绍云, 陈思铭, 等. MEA无水溶剂捕集CO2的研究[J]. 现代化工, 2014, 34(8): 107-109. |
Guo C, Chen S Y, Chen S M, et al. Mixture absorption system of non-aqueous MEA solution for CO2 capture[J]. Modern Chemical Industry, 2014, 34(8): 107-109. | |
5 | 郭晖. 有机胺/醇醚非水混合体系吸收CO2过程特性研究[D]. 石家庄: 河北科技大学, 2019. |
Guo H. Research on CO2 absorption process using organic amine/glycol ether non-aqueous blends[D]. Shijiazhuang: Hebei University of Science and Technology, 2019. | |
6 | Liu S, Ling H, Gao H X, et al. Kinetics and new Brønsted correlations study of CO2 absorption into primary and secondary alkanolamine with and without steric-hindrance[J]. Separation and Purification Technology, 2020, 233: 115998. |
7 | Chen S M, Chen S Y, Zhang Y C, et al. Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 151-158. |
8 | Barzagli F, Mani F, Peruzzini M. A comparative study of the CO2 absorption in some solvent-free alkanolamines and in aqueous monoethanolamine (MEA)[J]. Environmental Science & Technology, 2016, 50(13): 7239-7246. |
9 | Sartori G, Savage D W. Sterically hindered amines for carbon dioxide removal from gases[J]. Industrial & Engineering Chemistry Fundamentals, 1983, 22(2): 239-249. |
10 | 刘凡. 2-氨基-2-甲基-1-丙醇(AMP)对非水相吸收剂捕集二氧化碳的调控机制研究[D]. 泉州: 华侨大学, 2018. |
Liu F. Regulatory mechanism of 2-amino-2-methyl-1-propanol(AMP) on non-aqueous absorbents for CO2 capture[D]. Quanzhou: Huaqiao University, 2018. | |
11 | Zheng C, Tan J, Wang Y J, et al. CO2 solubility in a mixture absorption system of 2-amino-2-methyl-1-propanol with ethylene glycol[J]. Industrial & Engineering Chemistry Research, 2013, 52 (34): 12247-12252. |
12 | Yang D Z, Lv M, Chen J. Efficient non-aqueous solvent formed by 2-piperidineethanol and ethylene glycol for CO2 absorption[J]. Chemical Communications, 2019, 55(83): 12483-12486. |
13 | Shen K P, Li M H, Yih S M. Kinetics of carbon dioxide reaction with sterically hindered 2-piperidineethanol aqueous solutions[J]. Industrial & Engineering Chemistry Research, 1991, 30(8): 1811-1813. |
14 | 陶梦娜. 非水溶剂/多元胺体系的CO2液固相变吸收基础研究[D]. 杭州: 浙江大学, 2018. |
Tao M N. The basic study of CO2 liquid-solid phase change absorption with non-aqueous solvent/polyamine system[D]. Hangzhou: Zhejiang University, 2018. | |
15 | 张政. 有机胺非水体系相变吸收CO2研究[D]. 昆明: 昆明理工大学, 2016. |
Zhang Z. Study on phase change absorption of CO2 using nonaqueous amine systems[D]. Kunming: Kunming University of Science and Technology, 2016. | |
16 | 文娟, 霍春秀, 杨剑, 等. 混合胺MEA+DETA吸收CO2的影响因素[J]. 环境工程学报, 2013, 7(11): 4451-4456. |
Wen J, Huo C X, Yang J, et al. Impacts on CO2 absorption process in aqueous solution of MEA + DETA[J]. Chinese Journal of Environmental Engineering, 2013, 7(11): 4451-4456. | |
17 | Patil M P, Vaidya P D. New AMP/polyamine blends for improved CO2 capture: study of kinetic and equilibrium features[J]. The Canadian Journal of Chemical Engineering, 2020, 98(2): 556-565. |
18 | 张永春, 陈思铭, 陈绍云, 等. 一种用于捕集混合气体中二氧化碳的非水脱碳溶液及其应用: 104492226A[P]. 2015-04-08. |
Zhang Y C, Chen S M, Chen S Y, et al. Non-aqueous decarburization solution for capturing carbon dioxide in mixed gas and application thereof: 104492226A[P]. 2015-04-08. | |
19 | Kang M K, Jeon S B, Cho J H, et al. Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions[J]. International Journal of Greenhouse Gas Control, 2017, 63: 281-288. |
20 | Kang M K, Cho J H, Lee J H, et al. Kinetic reaction characteristics of quasi-aqueous and nonaqueous sorbents for CO2 absorption using MEA/H2O/ethylene glycol[J]. Energy & Fuels, 2017, 31(8): 8383-8391. |
21 | Im J, Hong S Y, Cheon Y, et al. Steric hindrance-induced zwitterionic carbonates from alkanolamines and CO2: highly efficient CO2 absorbents[J]. Energy & Environmental Science, 2011, 4(10): 4284-4289. |
22 | Liu F, Jing G H, Zhou X B, et al. Performance and mechanisms of triethylene tetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP) in aqueous and nonaqueous solutions for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1352-1361. |
23 | Sada E, Kumazawa H, Han Z Q, et al. Chemical kinetics of the reaction of carbon dioxide with ethanolamines in non-aqueous solvents[J]. AIChE Journal, 1985, 31(8): 1297-1303. |
24 | Hwang K S, Park S W, Park D W, et al. Absorption of carbon dioxide into diisopropanolamine solutions of polar organic solvents[J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(1): 16-21. |
25 | Mahajani V V, Joshi J B. Kinetics of reactions between carbon dioxide and alkanolamines[J]. Gas Separation & Purification, 1988, 2(2): 50-64. |
26 | Masuda K, Ito Y, Horiguchi M, et al. Studies on the solvent dependence of the carbamic acid formation from ω-(1-naphthyl)alkylamines and carbon dioxide[J]. Tetrahedron, 2005, 61(1): 213-229. |
27 | Hutchinson A J L. Process for treating gases: US2177068A[P]. 1939-10-24. |
28 | Lin P H, Wong D S H. Carbon dioxide capture and regeneration with amine/alcohol/water blends[J]. International Journal of Greenhouse Gas Control, 2014, 26: 69-75. |
29 | Barbarossa V, Barzagli F, Mani F, et al. Efficient CO2 capture by non-aqueous 2-amino-2-methyl-1-propanol (AMP) and low temperature solvent regeneration[J]. RSC Advances, 2013, 3(30): 12349-12355. |
30 | Yu Y S, Lu H F, Zhang T T, et al. Determining the performance of an efficient nonaqueous CO2 capture process at desorption temperatures below 373 K[J]. Industrial & Engineering Chemistry Research, 2013, 52(35): 12622-12634. |
31 | Yu C H, Wu T W, Tan C S. CO2 capture by piperazine mixed with non-aqueous solvent diethylene glycol in a rotating packed bed[J]. International Journal of Greenhouse Gas Control, 2013, 19: 503-509. |
32 | Guo H, Li C X, Shi X Q, et al. Nonaqueous amine-based absorbents for energy efficient CO2 capture[J]. Applied Energy, 2019, 239: 725-734. |
33 | Couchaux G, Barth D, Jacquin M, et al. Kinetics of carbon dioxide with amines(Ⅰ): Stopped-flow studies in aqueous solutions. A review[J]. Oil & Gas Science and Technology, 2013, 69(5): 865-884. |
34 | Garcia M, Knuutila H K, Aronu U E, et al. Influence of substitution of water by organic solvents in amine solutions on absorption of CO2[J]. International Journal of Greenhouse Gas Control, 2018, 78: 286-305. |
35 | Kadiwala S, Rayer A V, Henni A. Kinetics of carbon dioxide (CO2) with ethylenediamine, 3-amino-1-propanol in methanol and ethanol, and with 1-dimethylamino-2-propanol and 3-dimethylamino-1-propanol in water using stopped-flow technique[J]. Chemical Engineering Journal, 2012, 179: 262-271. |
36 | 陆诗建, 毛松柏, 李玉星, 等. AMP-PZ复合体系吸收CO2反应动力学研究[J]. 山东化工, 2020, 49(8): 40-44, 47. |
Lu S J, Mao S B, Li Y X, et al. Study on the kinetics of absorption of CO2 by AMP-PZ composite system[J]. Shandong Chemical Industry, 2020, 49(8): 40-44, 47. | |
37 | Caplow M. Kinetics of carbamate formation and breakdown[J]. Journal of the American Chemical Society, 1968, 90(24): 6795-6803. |
38 | Danckwerts P V. The reaction of CO2 with ethanolamines[J]. Chemical Engineering Science, 1979, 34(4): 443-446. |
39 | Versteeg G F, van Swaaij W P M. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions(Ⅰ): Primary and secondary amines[J]. Chemical Engineering Science, 1988, 43(3): 573-585. |
40 | Laddha S S, Danckwerts P V. Reaction of CO2 with ethanolamines: kinetics from gas-absorption[J]. Chemical Engineering Science, 1981, 36(3): 479-482. |
41 | Park S W, Lee J W, Choi B S, et al. Reaction kinetics of carbon dioxide with diethanolamine in polar organic solvents[J]. Separation Science and Technology, 2005, 40(9): 1885-1898. |
42 | Crooks J E, Donnellan J P. Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution[J]. Journal of the Chemical Society, Perkin Transactions 2, 1989, (4): 331-333. |
43 | da Silva E F, Svendsen H F. Ab initio study of the reaction of carbamate formation from CO2 and alkanolamines[J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3413-3418. |
44 | Shen S F, Bian Y Y, Zhao Y. Energy-efficient CO2 capture using potassium prolinate/ethanol solution as a phase-changing absorbent[J]. International Journal of Greenhouse Gas Control, 2017, 56: 1-11. |
45 | Barzagli F, Di Vaira M, Mani F, et al. Improved solvent formulations for efficient CO2 absorption and low-temperature desorption[J]. ChemSusChem, 2012, 5(9): 1724-1731. |
46 | Pakzad P, Mofarahi M, Ansarpour M, et al. Chapter 3 - CO2 absorption by common solvents [M]// Rahimpour M R, Farsi M, Makarem M A. Advances in Carbon Capture. Cambridge: Woodhead Publishing, 2020: 51-87. |
47 | Vaidya P D, Kenig E Y. Gas-liquid reaction kinetics: a review of determination methods[J]. Chemical Engineering Communications, 2007, 194(12): 1543-1565. |
48 | Li W S, Xiao S N, Liu S, et al. Comparative kinetics of homogeneous reaction of CO2 and unloaded/loaded amine using stopped-flow technique: a case study of MDEA solution[J]. Separation and Purification Technology, 2020, 242: 116833. |
49 | Bian Y Y, Li H, Shen S F. Reaction kinetics of carbon dioxide with potassium prolinate in water-lean solvents[J]. Chemical Engineering Science, 2019, 199: 220-230. |
50 | Shen S F, Yang Y N, Bian Y Y, et al. Kinetics of CO2 absorption into aqueous basic amino acid salt: potassium salt of lysine solution[J]. Environmental Science & Technology, 2016, 50(4): 2054-2063. |
51 | Zheng C, Zhao B C, Wang K, et al. Determination of kinetics of CO2 absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique[J]. AIChE Journal, 2015, 61(12): 4358-4366. |
52 | Choi W J, Min B M, Seo J B, et al. Effect of ammonia on the absorption kinetics of carbon dioxide into aqueous 2-amino-2-methyl-1-propanol solutions[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 4022-4029. |
53 | Guo H, Shi X Q, Shen S F. Solubility of N2O and CO2 in non-aqueous systems of monoethanolamine and glycol ethers: measurements and model representation[J]. The Journal of Chemical Thermodynamics, 2019, 137: 76-85. |
54 | Wang Y W, Otto F D, Mather A E, et al. Solubilities and diffusivities of N2O and CO2 in aqueous sulfolane solutions[J]. Journal of Chemical Technology & Biotechnology, 1991, 51(2): 197-208. |
55 | Lide D R. CRC Handbook of Chemistry and Physics[M]. 90th ed. Boca Raton, FL: CRC Press, 2010. |
56 | Gui X, Tang Z G, Fei W Y. Solubility of CO2 in alcohols, glycols, ethers, and ketones at high pressures from 288.15 to 318.15 K[J]. Journal of Chemical & Engineering Data, 2011, 56(5): 2420-2429. |
57 | Xiao M, Liu H L, Wang J L, et al. An experimental and modeling study of physical N2O solubility in 2-(ethylamino)ethanol[J]. The Journal of Chemical Thermodynamics, 2019, 138: 34-42. |
58 | Luo X, Su L S, Gao H X, et al. Density, viscosity, and N2O solubility of aqueous 2-(methylamino)ethanol solution[J]. Journal of Chemical & Engineering Data, 2017, 62(1): 129-140. |
59 | Wang Y W, Xu S, Otto F D, et al. Solubility of N2O in alkanolamines and in mixed solvents[J]. The Chemical Engineering Journal, 1992, 48(1): 31-40. |
60 | Hartono A, Juliussen O, Svendsen H F. Solubility of N2O in aqueous solution of diethylenetriamine[J]. Journal of Chemical & Engineering Data, 2008, 53(11): 2696-2700. |
61 | Oyevaar M H, Morssinkhof R W J, Westerterp K R. Density, viscosity, solubility, and diffusivity of carbon dioxide and nitrous oxide in solutions of diethanolamine in aqueous ethylene glycol at 298 K[J]. Journal of Chemical & Engineering Data, 1989, 34(1): 77-82. |
62 | Park S W, Choi B S, Lee J W. Chemical absorption of carbon dioxide with triethanolamine in non-aqueous solutions[J]. Korean Journal of Chemical Engineering, 2006, 23(1): 138-143. |
63 | Sada E, Kumazawa H, Han Z Q. Kinetics of reaction between carbon dioxide and ethylenediamine in nonaqueous solvents[J]. The Chemical Engineering Journal, 1985, 31(2): 109-115. |
64 | Chen S, Han X M, Sun X Y, et al. The comparative kinetics study of CO2 absorption into non-aqueous DEEA/MEA and DMEA/MEA blended systems solution by using stopped-flow technique[J]. Chemical Engineering Journal, 2020, 386: 121295. |
65 | Alvarez-Fuster C, Midoux N, Laurent A, et al. Chemical kinetics of the reaction of CO2 with amines in pseudo m-nth order conditions in polar and viscous organic solutions[J]. Chemical Engineering Science, 1981, 36(9): 1513-1518. |
66 | Zhong N, Liu H L, Luo X, et al. Reaction kinetics of carbon dioxide (CO2) with diethylenetriamine and 1-amino-2-propanol in nonaqueous solvents using stopped-flow technique[J]. Industrial & Engineering Chemistry Research, 2016, 55(27): 7307-7317. |
67 | Sada E, Kumazawa H, Osawa Y, et al. Reaction kinetics of carbon dioxide with amines in non-aqueous solvents[J]. The Chemical Engineering Journal, 1986, 33(2): 87-95. |
68 | Kadiwala S, Rayer A V, Henni A. Kinetics of carbon dioxide (CO2) with ethylenediamine, 3-amino-1-propanol in methanol and ethanol, and with 1-dimethylamino-2-propanol and 3-dimethylamino-1-propanol in water using stopped-flow technique[J]. Chemical Engineering Journal, 2012, 179: 262-271. |
69 | Xu S, Wang Y W, Otto F D, et al. Kinetics of the reaction of carbon dioxide with 2-amino-2-methyl-1-propanol solutions[J]. Chemical Engineering Science, 1996, 51(6): 841-850. |
70 | Ali S H, Merchant S Q, Fahim M A. Kinetic study of reactive absorption of some primary amines with carbon dioxide in ethanol solution[J]. Separation and Purification Technology, 2000, 18(3): 163-175. |
71 | Dinda S, Patwardhan A V, Pradhan N C. Kinetics of reactive absorption of carbon dioxide with solutions of aniline in nonaqueous aprotic solvents[J]. Industrial & Engineering Chemistry Research, 2006, 45(20): 6632-6639. |
72 | Herbrandson H F, Neufeld F R. Organic reactions and the critical energy density of the solvent. the solubility parameter, δ, as a new solvent parameter[J]. The Journal of Organic Chemistry, 1966, 31(4): 1140-1143. |
73 | Davis R A, Sandall O C. Kinetics of the reaction of carbon dioxide with secondary amines in polyethylene glycol[J]. Chemical Engineering Science, 1993, 48(18): 3187-3193. |
74 | Donaldson T L, Nguyen Y N. Carbon dioxide reaction kinetics and transport in aqueous amine membranes[J]. Industrial & Engineering Chemistry Fundamentals, 1980, 19(3): 260-266. |
75 | Versteeg G F, van Swaaij W P M. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions(Ⅱ): Tertiary amines[J]. Chemical Engineering Science, 1988, 43(3): 587-591. |
76 | Blauwhoff P M M, Versteeg G F, van Swaaij W P M. A study on the reaction between CO2 and alkanolamines in aqueous solutions[J]. Chemical Engineering Science, 1983, 38(9): 1411-1429. |
77 | Park S W, Lee J W, Choi B S, et al. Absorption of carbon dioxide into non-aqueous solutions of N-methyldiethanolamine[J]. Korean Journal of Chemical Engineering, 2006, 23(5): 806-811. |
78 | Zhong N, Liu H L, Zhang H Y, et al. Kinetics of carbon dioxide (CO2) with diethylenetriamine in non-aqueous solvents using stopped-flow technique[J]. Energy Procedia, 2017, 114: 1869-1876. |
79 | Rayer A V, Henni A, Li J L. Reaction kinetics of 2-((2-aminoethyl) amino) ethanol in aqueous and non-aqueous solutions using the stopped-flow technique[J]. The Canadian Journal of Chemical Engineering, 2013, 91(3): 490-498. |
80 | 钟楠. 有机胺在非水体系中吸收二氧化碳的动力学研究[D]. 长沙: 湖南大学, 2017. |
Zhong N. Reaction kinetics of carbon dioxide(CO2) with diethylenetriamine, 1, 3-diaminopropane and 1-amino-2-propanol in non-aqueous solvents using stopped-flow technique[D]. Changsha: Hunan University, 2017. | |
81 | Duatepe F P G, Orhan O Y, Alper E. Kinetics of carbon dioxide absorption by nonaqueous solutions of promoted sterically hindered amines[J]. Energy Procedia, 2017, 114: 57-65. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[8] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[9] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[10] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[11] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[12] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[13] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[14] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[15] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||