化工学报 ›› 2022, Vol. 73 ›› Issue (1): 232-240.DOI: 10.11949/0438-1157.20211097
董桂霖1(),罗祖伟2,曹约强2(),周静红2,李伟1,周兴贵2
收稿日期:
2021-08-09
修回日期:
2021-09-16
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
曹约强
作者简介:
董桂霖(1984—),男,博士研究生,基金资助:
Guilin DONG1(),Zuwei LUO2,Yueqiang CAO2(),Jinghong ZHOU2,Wei LI1,Xinggui ZHOU2
Received:
2021-08-09
Revised:
2021-09-16
Online:
2022-01-05
Published:
2022-01-18
Contact:
Yueqiang CAO
摘要:
以表面氨基功能化修饰的介孔二氧化硅纳米微球(AS)为载体,乙醇为还原剂,通过调变前体AgNO3的还原温度,制得了四种不同银催化剂(Ag/AS),结合催化剂表征技术和催化性能研究,探讨了液相还原温度对银硅催化剂上草酸二甲酯(DMO)加氢制乙醇酸甲酯(MG)反应性能的影响规律。X射线衍射、氮气物理吸附、透射电镜、X射线光电子能谱等研究结果表明,Ag/AS催化剂随着还原温度的升高Ag颗粒的平均粒径呈指数型增大,对应的表面Ag原子配位数也随之增大。DMO吸附的原位红外光谱和DMO程序升温脱附实验表明,还原温度升高引起的表面原子配位数的增大,减弱了DMO在催化剂上的吸附进而降低了DMO加氢制MG的活性。
中图分类号:
董桂霖, 罗祖伟, 曹约强, 周静红, 李伟, 周兴贵. 液相还原温度对草酸酯加氢制乙醇酸甲酯银硅催化剂性能的影响[J]. 化工学报, 2022, 73(1): 232-240.
Guilin DONG, Zuwei LUO, Yueqiang CAO, Jinghong ZHOU, Wei LI, Xinggui ZHOU. Effect of liquid-phase reduction temperature on performance of silver-silica catalysts for hydrogenation of dimethyl oxalate to methyl glycolate[J]. CIESC Journal, 2022, 73(1): 232-240.
图1 不同还原温度制得的Ag/AS催化剂的TEM图及其对应的Ag粒径分布
Fig.1 Typical TEM images of the Ag/AS catalysts reduced at different temperature and the corresponding histograms of the particle size distributions
Sample | Ag content①/% | SBET②/(m2·g-1) | Vpore③/(cm3·g-1) | Dpore③/nm | dAg·TEM④/nm | dAg·XRD⑤/nm | D⑥/% | SAg⑥/(m2·g-1) | TOF/h-1 |
---|---|---|---|---|---|---|---|---|---|
Ag/AS_70 | 2.9 | 242 | 0.33 | 6.12 | 5.5±0.9 | nd | 31.7 | 4.46 | 230⑦ |
Ag/AS_75 | 2.6 | 210 | 0.26 | 5.43 | 7.3±1.7 | 6.7 | 19.0 | 2.40 | 179⑧ |
Ag/AS_80 | 2.3 | 162 | 0.21 | 5.27 | 11.4±2.1 | 11.0 | 13.3 | 1.48 | 123⑨ |
Ag/AS_85 | 2.1 | 117 | 0.17 | 5.15 | 20.6±2.8 | 20.4 | 5.7 | 0.58 | 72⑩ |
表1 Ag/AS催化剂的物理化学性质
Table 1 Physicochemical properties of the Ag/AS catalysts
Sample | Ag content①/% | SBET②/(m2·g-1) | Vpore③/(cm3·g-1) | Dpore③/nm | dAg·TEM④/nm | dAg·XRD⑤/nm | D⑥/% | SAg⑥/(m2·g-1) | TOF/h-1 |
---|---|---|---|---|---|---|---|---|---|
Ag/AS_70 | 2.9 | 242 | 0.33 | 6.12 | 5.5±0.9 | nd | 31.7 | 4.46 | 230⑦ |
Ag/AS_75 | 2.6 | 210 | 0.26 | 5.43 | 7.3±1.7 | 6.7 | 19.0 | 2.40 | 179⑧ |
Ag/AS_80 | 2.3 | 162 | 0.21 | 5.27 | 11.4±2.1 | 11.0 | 13.3 | 1.48 | 123⑨ |
Ag/AS_85 | 2.1 | 117 | 0.17 | 5.15 | 20.6±2.8 | 20.4 | 5.7 | 0.58 | 72⑩ |
图6 2.0 MPa、220℃、H2/DMO为80时Ag/AS催化剂在DMO加氢制MG反应中的性能考评
Fig.6 Performance evaluation of Ag/AS catalysts in DMO hydrogenation to MG under 2.0 MPa,220℃,H2/DMO 80
1 | 王登豪, 张传彩, 朱明远, 等. 高效稳定的铜镍催化剂在草酸二甲酯加氢中的应用[J]. 化工学报, 2017, 68(7): 2739-2745. |
Wang D H, Zhang C C, Zhu M Y, et al. Efficient and stable hydrogenation of dimethyl oxalate via copper-nickel catalysts[J]. CIESC Journal, 2017, 68(7): 2739-2745. | |
2 | Sun Y, Wang H, Shen J H, et al. Highly effective synthesis of methyl glycolate with heteropolyacids as catalysts[J]. Catalysis Communications, 2009, 10(5): 678-681. |
3 | Lee K Y, Bouhadir K H, Mooney D J. Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels[J]. Macromolecules, 2000, 33(1): 97-101. |
4 | Yue H R, Zhao Y J, Ma X B, et al. Ethylene glycol: properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41(11): 4218-4244. |
5 | Xu Q. Metal carbonyl cations: generation, characterization and catalytic application[J]. Coordination Chemistry Reviews, 2002, 231(1/2): 83-108. |
6 | 王克冰, 姚洁, 雷永诚, 等. 硫酸氢钠催化甲醛与甲酸甲酯的偶联反应[J]. 化工学报, 2007, 58(4): 897-902. |
Wang K B, Yao J, Lei Y C, et al. Coupling reaction of formaldehyde and methyl formate over sodium bisulfate catalyst[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(4): 897-902. | |
7 | 龚海燕. Cu/SiO2催化草酸二甲酯加氢制乙醇酸甲酯的反应性能[J]. 化学反应工程与工艺, 2014, 30(2): 169-174. |
Gong H Y. Hydrogenation of dimethyl oxalate to methyl glycolate on Cu/SiO2 catalyst[J]. Chemical Reaction Engineering and Technology, 2014, 30(2): 169-174. | |
8 | 穆仕芳, 尚如静, 魏灵朝, 等. 草酸二甲酯选择性加氢非硅基催化体系分析[J]. 现代化工, 2016, 36(10): 34-37. |
Mu S F, Shang R J, Wei L C, et al. Analysis of non-silica catalytic system for selective hydrogenation of dimethyl oxalate[J]. Modern Chemical Industry, 2016, 36(10): 34-37. | |
9 | Huang W G, He D H, Liu J Y, et al. Catalytic condensation of formaldehyde and methyl formate over 12-tungstosilicic compounds[J]. Applied Catalysis A: General, 2000, 199(1): 93-98. |
10 | Celik F E, Lawrence H, Bell A T. Synthesis of precursors to ethylene glycol from formaldehyde and methyl formate catalyzed by heteropoly acids[J]. Journal of Molecular Catalysis A: Chemical, 2008, 288(1/2): 87-96. |
11 | Zhang L, Han L P, Zhao G F, et al. Structured Pd-Au/Cu-fiber catalyst for gas-phase hydrogenolysis of dimethyl oxalate to ethylene glycol[J]. Chemical Communications, 2015, 51(52): 10547-10550. |
12 | Zheng J W, Zhou J F, Lin H Q, et al. CO-mediated deactivation mechanism of SiO2-supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol[J]. The Journal of Physical Chemistry C, 2015, 119(24): 13758-13766. |
13 | 俞金山, 冯翀, 刘甜甜, 等. 可抑制1, 2-丁二醇生成的高性能草酸二甲酯加氢B-Cu/MS催化剂的研究[J]. 天然气化工(C1化学与化工), 2021, 46(4): 33-40. |
Yu J S, Feng C, Liu T T, et al. Study on high performance B-Cu/MS catalyst for suppressing by-product 1, 2-butanediol in hydrogenation of dimethyl oxalate[J]. Natural Gas Chemical Industry, 2021, 46(4): 33-40. | |
14 | Zhou J F, Duan X P, Ye L M, et al. Enhanced chemoselective hydrogenation of dimethyl oxalate to methyl glycolate over bimetallic Ag-Ni/SBA-15 catalysts[J]. Applied Catalysis A: General, 2015, 505: 344-353. |
15 | Li M M J, Ye L M, Zheng J W, et al. Surfactant-free nickel-silver core@shell nanoparticles in mesoporous SBA-15 for chemoselective hydrogenation of dimethyl oxalate[J]. Chemical Communications, 2016, 52(12): 2569-2572. |
16 | 李祥祥, 朱贻安, 周静红, 等. 银和铜催化草酸二甲酯加氢制乙醇酸甲酯反应机理的理论研究[J]. 天然气化工(C1化学与化工), 2018, 43(6): 17-23. |
Li X X, Zhu Y A, Zhou J H, et al. Insights into the reaction mechanism of dimethyl oxalate hydrogenation to methyl glycolate over Ag and Cu catalysts[J]. Natural Gas Chemical Industry, 2018, 43(6): 17-23. | |
17 | Dong G L, Cao Y Q, Zheng S N, et al. Catalyst consisting of Ag nanoparticles anchored on amine-derivatized mesoporous silica nanospheres for the selective hydrogenation of dimethyl oxalate to methyl glycolate[J]. Journal of Catalysis, 2020, 391: 155-162. |
18 | Hu Y W, Wang N, Zhou Z M. Synergetic effect of Cu active sites and oxygen vacancies in Cu/CeO2-ZrO2 for the water-gas shift reaction[J]. Catalysis Science & Technology, 2021, 11(7): 2518-2528. |
19 | 何璐铭, 辛忠, 高文莉, 等. 静电纺丝法制备高活性多孔Ni/SiO2甲烷化催化剂[J]. 化工学报, 2020, 71(11): 5007-5015. |
He L M, Xin Z, Gao W L, et al. Highly efficient porous Ni/SiO2 catalysts prepared by electrospinning method for CO methanation[J]. CIESC Journal, 2020, 71(11): 5007-5015. | |
20 | Zheng J W, Lin H Q, Wang Y N, et al. Efficient low-temperature selective hydrogenation of esters on bimetallic Au-Ag/SBA-15 catalyst[J]. Journal of Catalysis, 2013, 297: 110-118. |
21 | 吴岳峰, 曲永芳, 李大欢, 等. 聚离子液体载MoO2/Ag催化分子氧氧化苯乙烯的研究[J]. 化工学报, 2020, 71(11): 4990-4998. |
Wu Y F, Qu Y F, Li D H, et al. Study on oxidation of styrene with molecular oxygen catalyzed by MoO2/Ag on polyionic liquid[J]. CIESC Journal, 2020, 71(11): 4990-4998. | |
22 | Zheng J W, Lin H Q, Zheng X L, et al. Highly efficient mesostructured Ag/SBA-15 catalysts for the chemoselective synthesis of methyl glycolate by dimethyl oxalate hydrogenation[J]. Catalysis Communications, 2013, 40: 129-133. |
23 | 邓湘玲, 叶松寿, 曹志凯, 等. Ag/Ce0.75Zr0.25O2催化剂中Ag的负载量对碳烟燃烧活性的影响[J]. 化工学报, 2017, 68(8): 3064-3070. |
Deng X L, Ye S S, Cao Z K, et al. Effect of Ag loading on soot oxidation for Ag/Ce0.75Zr0.25O2 catalysts[J]. CIESC Journal, 2017, 68(8): 3064-3070. | |
24 | Chen H M, Tan J J, Cui J L, et al. Promoting effect of boron oxide on Ag/SiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. Molecular Catalysis, 2017, 433: 346-353. |
25 | 曹昊苏, 张荣成, 朱长俊, 等. Ag-H2Ti4O9复合材料的制备以及可见光下对甲苯降解的研究[J]. 硅酸盐通报, 2018, 37(11): 3623-3629, 3636. |
Cao H S, Zhang R C, Zhu C J, et al. Preparation of Ag doped H2Ti4O9 and the study on its photocatalytic degradation of toluene under visible light[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3623-3629, 3636. | |
26 | Bergman S L, Ganguly A S, Bernasek S L. XPS characterization of a plasmonic sensor for catalysis studies by controlled differential charging[J]. Journal of Electron Spectroscopy and Related Phenomena, 2018, 222: 88-94. |
27 | Bukhtiyarov V I, Prosvirin I P, Kvon R I, et al. XPS study of the size effect in ethene epoxidation on supported silver catalysts[J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93(13): 2323-2329. |
28 | Chen J Y, Cui P X, Zhao G Q, et al. Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution[J]. Angewandte Chemie International Edition, 2019, 58(36): 12540-12544. |
29 | Hu J, Wu L, Kuttiyiel K A, et al. Increasing stability and activity of core-shell catalysts by preferential segregation of oxide on edges and vertexes: oxygen reduction on Ti-Au@Pt/C[J]. Journal of the American Chemical Society, 2016, 138(29): 9294-9300. |
30 | Zhang J Y, Qian J M, Ran J Q, et al. Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions[J]. ACS Catalysis, 2020, 10(21): 12376-12384. |
31 | Zheng J W, Duan X P, Lin H Q, et al. Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate[J]. Nanoscale, 2016, 8(11): 5959-5967. |
32 | Ma X B, Chi H W, Yue H R, et al. Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts[J]. AIChE Journal, 2013, 59(7): 2530-2539. |
33 | Cui G Q, Meng X Y, Zhang X, et al. Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid-base sites[J]. Applied Catalysis B: Environmental, 2019, 248: 394-404. |
34 | Fleming I. Molecular Orbitals and Organic Chemical Reactions[M]. Chichester, UK: John Wiley & Sons, Ltd., 2010. |
35 | Dong G L, Luo Z W, Cao Y Q, et al. Understanding size-dependent hydrogenation of dimethyl oxalate to methyl glycolate over Ag catalysts[J]. Journal of Catalysis, 2021, 401: 252-261. |
36 | Hartfelder U, Kartusch C, Makosch M, et al. Particle size and support effects in hydrogenation over supported gold catalysts[J]. Catal. Sci. Technol., 2013, 3(2): 454-461. |
37 | Kasinathan P, Hwang D W, Lee U H, et al. Effect of Cu particle size on hydrogenation of dimethyl succinate over Cu-SiO2 nanocomposite[J]. Catalysis Communications, 2013, 41: 17-20. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[5] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[13] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[14] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[15] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||