化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5394-5404.DOI: 10.11949/0438-1157.20221222
收稿日期:
2022-09-07
修回日期:
2022-12-10
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
周乐平
作者简介:
李文祥(1994—),男,硕士研究生,120202202060@ncepu.edu.cn
基金资助:
Wenxiang LI1(), Junhe WANG1, Yijing HAO1, Leping ZHOU1,2()
Received:
2022-09-07
Revised:
2022-12-10
Online:
2022-12-05
Published:
2023-01-17
Contact:
Leping ZHOU
摘要:
实验研究了不同淬火初温下疏水性对沸腾传热特性的影响规律,定量分析了临界热通量(CHF)、最小热通量(MHF)和转变热通量(THF)以及对应的温度、时间的演变规律。结果表明,疏水性增强使淬火曲线右移,沸腾曲线向左下偏移,CHF和MHF和对应的温度减小,淬火时间增加;淬火初温提高,上述变化趋势逐渐变得不明显。说明疏水性增强总体恶化了淬火沸腾传热,而淬火初温提高可相对强化淬火沸腾传热。同时发现,过渡沸腾阶段分亚区情况随淬火初温提高而增多,临界过渡点(CTP)也受到相应影响;传热系数最大值发生在偏离核态沸腾(DNB)点附近。
中图分类号:
李文祥, 王钧禾, 郝怡静, 周乐平. 淬火初温影响疏水表面沸腾传热特性的实验研究[J]. 化工学报, 2022, 73(12): 5394-5404.
Wenxiang LI, Junhe WANG, Yijing HAO, Leping ZHOU. Experimental study on the effect of initial quenching temperature on the boiling heat transfer characteristics of hydrophobic surfaces[J]. CIESC Journal, 2022, 73(12): 5394-5404.
1 | Dhir V K, Duffey R B, Catton I. Quenching studies on a zircaloy rod bundle[J]. Journal of Heat Transfer, 1981, 103(2): 293-299. |
2 | Jena A. Wettability of candidate accident tolerant fuel (ATF) cladding materials in LWR conditions[D]. Massachusetts: Massachusetts Institute of Technology, 2020. |
3 | Long S, Liang Y, Jiang Y, et al. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel[J]. Materials Science and Engineering: A, 2016, 676: 38-47. |
4 | Ma J, He W, Liu Q. Strengthening a multilayered Zr/Ti composite by quenching at higher temperature[J]. Materials Science and Engineering: A, 2018, 737: 1-8. |
5 | Jahedi M, Moshfegh B. Experimental study of quenching process on a rotating hollow cylinder by one row of impinging jets[C]//9th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics. Iguazu Falls, Brazil, 2017. |
6 | Woodfield P L, Mozumder A K, Monde M. On the size of the boiling region in jet impingement quenching[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 460-465. |
7 | Mozumder A K, Monde M, Woodfield P L, et al. Maximum heat flux in relation to quenching of a high temperature surface with liquid jet impingement[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 2877-2888. |
8 | Hwang G S, In W K, Lee C Y. Quenching experiments of vertical Inconel and zircaloy tubes in internal water flow[J]. Annals of Nuclear Energy, 2022, 167: 108798. |
9 | Lee Y P, Chen W J, Groeneveld D C. Rewetting of very hot vertical and horizontal channels by flooding[C]//International Heat Transfer Conference Digital Library. Begel House Inc., 1978, 5: 95-100. |
10 | Chung M K, Lee Y W, Cha J H. Experimental study of rewetting phenomena[J]. Nuclear Engineering and Technology, 1980, 12(1): 9-18. |
11 | Li C, Wang Z, Wang P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8): 1084-1088. |
12 | Chu K H, Enright R, Wang E N. Structured surfaces for enhanced pool boiling heat transfer[J]. Applied Physics Letters, 2012, 100(24): 241603. |
13 | Ahn H S, Kim J M, Kim M H. Experimental study of the effect of a reduced graphene oxide coating on critical heat flux enhancement[J]. International Journal of Heat and Mass Transfer, 2013, 60: 763-771. |
14 | 肖平, 侯峰, 刘京雷. 火焰喷涂型多孔表面制备及其池沸腾实验研究[J]. 化学工程, 2018, 46( 8): 28-32, 37. |
Xiao P, Hou F, Liu J L. Preparation and experimental study on pool boiling of flame-sprayed porous surface[J]. Chemical Engineering(China), 2018, 46( 8): 28-32, 37. | |
15 | Kim H, DeWitt G, McKrell T, et al. On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles[J]. International Journal of Multiphase Flow, 2009, 35(5): 427-438. |
16 | Kim H, Ahn H S, Kim M H. On the mechanism of pool boiling critical heat flux enhancement in nanofluids[J]. Journal of Heat Transfer, 2010, 132: 061501. |
17 | Zhang L, Yu Z, Li D, et al. Enhanced critical heat flux during quenching of extremely dilute aqueous colloidal suspensions with graphene oxide nanosheets[J]. Journal of Heat Transfer, 2013, 135: 054502. |
18 | 王洪亮, 夏虹, 张会勇, 等. 纳米流体对临界热通量强化影响池沸腾实验研究[J]. 应用科技, 2017(1): 82-86. |
Wang H L, Xia H, Zhang H Y, et al. Investigation of critical heat flux emhancement pool boiling experiment by using nanofluids [J]. Applied Science and Technology, 2017(1): 82-86. | |
19 | Taylor R A, Phelan P E. Pool boiling of nanofluids: comprehensive review of existing data and limited new data[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5339-5347. |
20 | Barber J, Brutin D, Tadrist L. A review on boiling heat transfer enhancement with nanofluids[J]. Nanoscale Research Letters, 2011, 6(1): 1-16. |
21 | Kim H. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review[J]. Nanoscale Research Letters, 2011, 6(1): 1-18. |
22 | Seon Ahn H, Hwan Kim M. A review on critical heat flux enhancement with nanofluids and surface modification[J]. Journal of Heat Transfer, 2012, 134:024001. |
23 | Kim H, Truong B, Buongiorno J, et al. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena[J]. Applied Physics Letters, 2011, 98(8): 083121. |
24 | O'Hanley H, Coyle C, Buongiorno J, et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux[J]. Applied Physics Letters, 2013, 103(2): 024102. |
25 | Zhang C, Zhou W, Wang Q, et al. Comparison of static contact angle of various metal foams and porous copper fiber sintered sheet[J]. Applied Surface Science, 2013, 276: 377-382. |
26 | 赵鹏飞, 冀文涛, 赵二涛, 等. 不同润湿性表面池沸腾换热特性研究[J]. 中国科技论文, 2018, 13(11): 1211-1216. |
Zhao P F, Ji W T, Zhao E T, et al. Study on the pool boiling heat transfer of surfaces with different wettability[J]. China Sciencepaper, 2018, 13(11): 1211-1216. | |
27 | Li J Q, Mou L W, Zhang Y H, et al. An experimental study of the accelerated quenching rate and enhanced pool boiling heat transfer on rodlets with a superhydrophilic surface in subcooled water[J]. Experimental Thermal and Fluid Science, 2018, 92: 103-112. |
28 | Hendricks T J, Krishnan S, Choi C, et al. Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3357-3365. |
29 | Bourdon B, Bertrand E, Di Marco P, et al. Wettability influence on the onset temperature of pool boiling: Experimental evidence onto ultra-smooth surfaces[J]. Advances in Colloid and Interface Science, 2015, 221: 34-40. |
30 | Fan L W, Li J Q, Li D Y, et al. Regulated transient pool boiling of water during quenching on nanostructured surfaces with modified wettability from superhydrophilic to superhydrophobic[J]. International Journal of Heat and Mass Transfer, 2014, 76: 81-89. |
31 | Betz A R, Xu J, Qiu H, et al. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?[J]. Applied Physics Letters, 2010, 97(14): 141909. |
32 | Može M, Zupančič M, Golobič I. Investigation of the scatter in reported pool boiling CHF measurements including analysis of heat flux and measurement uncertainty evaluation methodology[J]. Applied Thermal Engineering, 2020, 169: 114938. |
33 | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
34 | Carey V P. Liquid Vapor Phase Change Phenomena[M]. 2nd ed. New York: Taylor-Francis, 2008: 353-371. |
35 | Witte L C, Lienhard J H. On the existence of two‘transition' boiling curves[J]. International Journal of Heat and Mass Transfer, 1982, 25(6): 771-779. |
36 | Hu H, Xu C, Zhao Y, et al. Modification and enhancement of cryogenic quenching heat transfer by a nanoporous surface[J]. International Journal of Heat and Mass Transfer, 2015, 80: 636-643. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[4] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[7] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 92
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 231
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||