化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5547-5554.DOI: 10.11949/0438-1157.20220864
顾帅威1(), 张纬1(), 陈阵1, 王海名1, 由长福1,2
收稿日期:
2022-06-21
修回日期:
2022-11-10
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
张纬
作者简介:
顾帅威(1994—),男,博士研究生,gusw19@mails.tsinghua.edu.cn
基金资助:
Shuaiwei GU1(), Wei ZHANG1(), Zhen CHEN1, Haiming WANG1, Changfu YOU1,2
Received:
2022-06-21
Revised:
2022-11-10
Online:
2022-12-05
Published:
2023-01-17
Contact:
Wei ZHANG
摘要:
石灰石资源的不可创造和不可再生导致优质石灰石资源逐渐稀缺,石灰石品位不断下降。低品位石灰石应用导致脱硫系统效率下降已逐渐成为行业内的频发事故。为明晰低品位石灰石脱硫浆液在酸性环境下的溶解动力学,开展了溶解体系温度、pH以及石灰石颗粒粒径等关键因素对低品位石灰石溶解特性的影响规律研究。结果表明,CaMg(CO3)2是低品位石灰石中存在的主要杂质,其在酸性环境中的溶解速率远低于CaCO3;由CaMg(CO3)2形成的惰性残留层决定了低品位石灰石的溶解过程主要由产物层内扩散控制。此外,基于未反应核的收缩模型,建立了低品位石灰石的半经验溶解动力学方程。
中图分类号:
顾帅威, 张纬, 陈阵, 王海名, 由长福. 低品位石灰石溶解特性及动力学模型[J]. 化工学报, 2022, 73(12): 5547-5554.
Shuaiwei GU, Wei ZHANG, Zhen CHEN, Haiming WANG, Changfu YOU. Dissolution reactivity and kinetic model of low-grade limestone[J]. CIESC Journal, 2022, 73(12): 5547-5554.
元素 | 含量/%(质量) |
---|---|
Ca | 34.44 |
Mg | 3.5 |
Si | 0.522 |
Al | 0.133 |
Na | 0.0858 |
Fe | 0.0726 |
表1 低品位石灰石关键元素分析
Table 1 Chemical components of low-grade limestone
元素 | 含量/%(质量) |
---|---|
Ca | 34.44 |
Mg | 3.5 |
Si | 0.522 |
Al | 0.133 |
Na | 0.0858 |
Fe | 0.0726 |
实验 | 温度T/℃ | pH | 粒径dp/μm |
---|---|---|---|
1 | 30 | 5.0 | 14.592 |
2 | 40 | 5.0 | 14.592 |
3 | 50 | 5.0 | 14.592 |
4 | 60 | 5.0 | 14.592 |
5 | 50 | 4.5 | 23.182 |
6 | 50 | 5.5 | 23.182 |
7 | 50 | 6.0 | 23.182 |
8 | 50 | 5.0 | 23.182 |
9 | 50 | 5.0 | 44.301 |
10 | 50 | 5.0 | 71.719 |
表2 低品位石灰石溶解实验工况
Table 2 Experimental conditions of low-grade limestone dissolution
实验 | 温度T/℃ | pH | 粒径dp/μm |
---|---|---|---|
1 | 30 | 5.0 | 14.592 |
2 | 40 | 5.0 | 14.592 |
3 | 50 | 5.0 | 14.592 |
4 | 60 | 5.0 | 14.592 |
5 | 50 | 4.5 | 23.182 |
6 | 50 | 5.5 | 23.182 |
7 | 50 | 6.0 | 23.182 |
8 | 50 | 5.0 | 23.182 |
9 | 50 | 5.0 | 44.301 |
10 | 50 | 5.0 | 71.719 |
温度T/℃ | 溶解速率常数k/min-1 |
---|---|
30 | 0.001714 |
40 | 0.002679 |
50 | 0.003528 |
60 | 0.004532 |
表3 不同温度下低品位石灰石溶解速率常数
Table 3 Dissolution rate constants of low-grade limestone at different temperatures
温度T/℃ | 溶解速率常数k/min-1 |
---|---|
30 | 0.001714 |
40 | 0.002679 |
50 | 0.003528 |
60 | 0.004532 |
粒径dp/μm | 溶解速率常数k/min-1 |
---|---|
14.592 | 0.003528 |
23.182 | 0.002296 |
44.301 | 0.001176 |
71.719 | 0.0004885 |
表4 不同粒径低品位石灰石溶解速率常数
Table 4 Dissolution rate constants of low-grade limestone with different particle sizes
粒径dp/μm | 溶解速率常数k/min-1 |
---|---|
14.592 | 0.003528 |
23.182 | 0.002296 |
44.301 | 0.001176 |
71.719 | 0.0004885 |
pH | H+浓度cA/(mol/L) | 溶解速率常数k/min-1 |
---|---|---|
4.5 | 10-4.5 | 0.003700 |
5.0 | 10-5.0 | 0.002296 |
5.5 | 10-5.5 | 0.001116 |
6.0 | 10-6.0 | 0.0004514 |
表5 不同pH条件下低品位石灰石溶解速率常数
Table 5 Dissolution rate constants of low-grade limestones under different pH conditions
pH | H+浓度cA/(mol/L) | 溶解速率常数k/min-1 |
---|---|---|
4.5 | 10-4.5 | 0.003700 |
5.0 | 10-5.0 | 0.002296 |
5.5 | 10-5.5 | 0.001116 |
6.0 | 10-6.0 | 0.0004514 |
1 | 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1): 3-8. |
Jin Y, Zhou Y C, Hu S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1): 3-8. | |
2 | 史晓斐, 杨思宇, 钱宇. 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69(12): 4931-4946. |
Shi X F, Yang S Y, Qian Y. Chemical looping technology for clean and highly efficient coal processes[J]. CIESC Journal, 2018, 69(12): 4931-4946. | |
3 | Ma L W, Allwood J M, Cullen J M, et al. The use of energy in China: tracing the flow of energy from primary source to demand drivers [J]. Energy, 2012, 40(1): 174-188. |
4 | Chen Z, You C F, Wang H M, et al. Experimental study on the synergetic removal of fine particles by wet flue gas desulfurization tower with a flow pattern control device[J]. Powder Technology, 2019, 343: 122-128. |
5 | Chen Z, Wang H M, Zhuo J K, et al. Experimental and numerical study on effects of deflectors on flow field distribution and desulfurization efficiency in spray towers[J]. Fuel Processing Technology, 2017, 162: 1-12. |
6 | 曲江源, 齐娜娜, 关彦军, 等. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128. |
Qu J Y, Qi N N, Guan Y J, et al. CFD simulation of transfer and chemical reaction process in wet flue gas desulfurization tower[J]. CIESC Journal, 2019, 70(6): 2117-2128. | |
7 | Cui L, Lu J W, Song X D, et al. Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization[J]. Fuel, 2021, 285: 119209. |
8 | Gao H L, Li C T, Zeng G M, et al. Experimental study of wet flue gas desulphurization with a novel type PCF device[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(2): 189-195. |
9 | Li R, Li Q, Sun X Y, et al. Efficient and rapid removal of EDTA-chelated P b ( Ⅱ ) by the F e ( Ⅲ ) /flue gas desulfurization gypsum (FGDG) system[J]. Journal of Colloid and Interface Science, 2019, 542: 379-386. |
10 | Córdoba P. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs[J]. Fuel, 2015, 144: 274-286. |
11 | Zhao Z Y, Zhang Y X, Gao W C, et al. Simulation of SO2 absorption and performance enhancement of wet flue gas desulfurization system[J]. Process Safety and Environmental Protection, 2021, 150: 453-463. |
12 | Liu C, Zhao Z Y, Gao W C, et al. Process optimization of S(Ⅳ) oxidation in flue gas desulfurization scrubbers[J]. Process Safety and Environmental Protection, 2021, 149: 610-618. |
13 | Altun N E. Assessment of marble waste utilization as an alternative sorbent to limestone for SO2 control[J]. Fuel Processing Technology, 2014, 128: 461-470. |
14 | Lim J, Jeong S, Kim J. Deep neural network-based optimal selection and blending ratio of waste seashells as an alternative to high-grade limestone depletion for SO X capture and utilization[J]. Chemical Engineering Journal, 2022, 431:133244. |
15 | Lim J, Choi Y, Kim G, et al. Modeling of the wet flue gas desulfurization system to utilize low-grade limestone[J]. Korean Journal of Chemical Engineering, 2020, 37(12): 2085-2093. |
16 | 孙彬. 微生物作用下镁离子影响矿化产物机制研究[D]. 山东科技大学, 2020. |
Sun B. Research on the mechanism of magnesium ion affecting mineralization products under the action of microorganisms[D]. Qingdao: Shandong University of Science and Technology, 2020. | |
17 | Zhao M X, Zou C J. An investigation into the influence of dissolution rate on flue gas desulfurization by limestone slurry[J]. Separation and Purification Technology, 2021, 276:119356. |
18 | Guelli U Souza S M A, Santos F B F, Ulson de Souza A A, et al. Limestone dissolution in flue gas desulfurization-experimental and numerical study[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(9): 1208-1214. |
19 | Pepe F. Dissolution of finely ground limestone particles in acidic solutions[J]. Industry & Engineering Chemistry Research, 2001, 40(23): 5378-5385. |
20 | Siagi Z O, Mbarawa M. Dissolution rate of South African calcium-based materials at constant pH[J]. Journal of Hazardous Materials, 2009, 163(2/3): 678-682. |
21 | Ukawa N, Takashina T, Shinoda N, et al. Effects of particle size distribution on limestone dissolution in wet FGD process applications[J]. Environmental Progress, 1993, 12(3): 238-242. |
22 | 吕丽娜. 基于石灰石-石膏湿法烟气脱硫技术的脱硫添加剂研究[D]. 上海: 华东理工大学, 2016. |
Lyu L N. Research on desulfurization additives based on the limestone-gypsum wet flue gas desulfurization technology[D]. Shanghai: East China University of Science and Technology, 2016. | |
23 | Tang L W, Dong S Q, Arnold R, et al. Atomic dislocations and bond rupture govern dissolution enhancement under acoustic stimulation[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55399-55410. |
24 | Wei Z S, Hsiao Y H, Chen X, et al. Isothermal stimulation of mineral dissolution processes by acoustic perturbation[J]. The Journal of Physical Chemistry C, 2018, 122(50): 28665-28673. |
25 | Muravyov M I, Fomchenko N V, Usoltsev A V, et al. Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3 [J]. Hydrometallurgy, 2012, 119/120: 40-46. |
26 | Carletti C, de Blasio C, Miceli, M, et al. Ultrasonic enhanced limestone dissolution: experimental and mathematical modeling[J]. Chemical Engineering and Processing: Process Intensification, 2017, 118: 26-36. |
27 | Gao X, Guo R T, Ding H L, et al. Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite[J]. Journal of Hazardous Materials, 2009, 168(2/3): 1059-1064. |
28 | Xiao W H, Liu X H, Zhao Z W. Kinetics of nickel leaching from low-nickel matte in sulfuric acid solution under atmospheric pressure[J]. Hydrometallurgy, 2020, 194: 105353. |
29 | Islas H, Flores M U, Reyes I A, et al. Determination of the dissolution rate of hazardous jarosites in different conditions using the shrinking core kinetic model[J]. Journal of Hazardous Materials, 2020, 386: 121664. |
30 | Hosseini T, Selomulya C, Haque N, et al. Indirect carbonation of victorian brown coal fly ash for CO2 sequestration: multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling[J]. Energy & Fuels, 2014, 28(10): 6481-6493. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[5] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[6] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[7] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[8] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[9] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[12] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[13] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[14] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[15] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 290
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||