化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2971-2981.DOI: 10.11949/0438-1157.20220192
董彬1(),薛永浩1,梁坤峰1(),袁争印2,王林1,周训1
收稿日期:
2022-02-10
修回日期:
2022-04-29
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
梁坤峰
作者简介:
董彬(1980—),男,讲师,基金资助:
Bin DONG1(),Yonghao XUE1,Kunfeng LIANG1(),Zhengyin YUAN2,Lin WANG1,Xun ZHOU1
Received:
2022-02-10
Revised:
2022-04-29
Online:
2022-07-05
Published:
2022-08-01
Contact:
Kunfeng LIANG
摘要:
根据相变微胶囊储存和释放潜热的特殊性质,分别使用相变微胶囊悬浮液(MPCMS)和纯水作为喷淋介质,搭建了一个小型喷淋塔装置,其中相变微胶囊的芯材为正二十二烷(C22H46)。实验设定了五个喷淋温度(35、40、44、47、51℃)、三个空气流量(0.011、0.018、0.025 m3/s)和两种直径(SMD=80、240 μm)的大、小液滴作为实验变量,探究了上述两种介质与空气之间的换热特性。实验结果表明:相变微胶囊的过冷会影响换热过程。常温常湿条件下,对于小液滴,当空气流量为0.018、0.025 m3/s时,喷淋温度为44、47℃的MPCMS比相同温度下的纯水更能促进换热;当空气流量为0.011 m3/s时,喷淋温度为44℃的MPCMS比相同温度下的纯水更能促进换热。对于大液滴,在三种空气流量下,喷淋温度为44℃的MPCMS比相同温度下的纯水作为喷淋介质时换热效果更好。
中图分类号:
董彬, 薛永浩, 梁坤峰, 袁争印, 王林, 周训. 相变微胶囊悬浮液喷淋换热特性实验研究[J]. 化工学报, 2022, 73(7): 2971-2981.
Bin DONG, Yonghao XUE, Kunfeng LIANG, Zhengyin YUAN, Lin WANG, Xun ZHOU. Experimental study on spray heat transfer characteristics of microencapsulated phase change material suspension[J]. CIESC Journal, 2022, 73(7): 2971-2981.
图2 喷淋系统装置1—水泵;2—保温桶;3—温控开关;4—加热棒;5—湿度采集器;6—整流器;7—水泵;8—安捷伦数据采集仪;9—电磁流量计;10—计算机;11—喷头;12—压力传感器;13—排气扇;14—功率控制仪;15—水箱;16—浮球阀
Fig.2 Sprinkler system device
喷淋介质 | SMD/μm | 喷淋温度/℃ | 空气流量/(m3/s) |
---|---|---|---|
纯水、MPCMS | 80、240 | 35、40、44、47、51 | 0.011、0.018、0.025 |
表1 实验条件
Table 1 Experimental conditions
喷淋介质 | SMD/μm | 喷淋温度/℃ | 空气流量/(m3/s) |
---|---|---|---|
纯水、MPCMS | 80、240 | 35、40、44、47、51 | 0.011、0.018、0.025 |
1 | Rao Z H, Qian Z, Kuang Y, et al. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123: 1514-1522. |
2 | Erdemir D, Atesoglu H, Altuntop N. Experimental investigation on enhancement of thermal performance with obstacle placing in the horizontal hot water tank used in solar domestic hot water system[J]. Renewable Energy, 2019, 138: 187-197. |
3 | Serale G, Fabrizio E, Perino M. Design of a low-temperature solar heating system based on a slurry phase change material (PCS)[J]. Energy and Buildings, 2015, 106: 44-58. |
4 | Pandey A K, Hossain M S, Tyagi V V, et al. Novel approaches and recent developments on potential applications of phase change materials in solar energy[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 281-323. |
5 | Al-Abidi A A, Bin Mat S, Sopian K, et al. Review of thermal energy storage for air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5802-5819. |
6 | Trivedi G V N, Parameshwaran R. Microencapsulated phase change material suspensions for cool thermal energy storage[J]. Materials Chemistry and Physics, 2020, 242: 122519. |
7 | Inaba H, Zhang Y L, Horibe A, et al. Numerical simulation of natural convection of latent heat phase-change-material microcapsulate slurry packed in a horizontal rectangular enclosure heated from below and cooled from above[J]. Heat and Mass Transfer, 2007, 43(5): 459-470. |
8 | Inaba H, Zhang Y L, Horibe A. Transient heat storage characteristics on horizontal rectangular enclosures filled with fluidity slurry of micro-encapsulated phase-change-material dispersed in water[J]. Journal of Thermal Science and Technology, 2006, 1(2): 66-77. |
9 | Yuan Z Y, Liang K F, Xue Y H, et al. Experimental study of evaluation of dynamical utilization of a microencapsulated phase change material slurry based on temperature range matching analysis[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105788. |
10 | Allouche Y, Varga S, Bouden C, et al. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank[J]. Energy Conversion and Management, 2015, 94: 275-285. |
11 | Zhang S, Niu J L. Two performance indices of TES apparatus: comparison of MPCM slurry vs. stratified water storage tank[J]. Energy and Buildings, 2016, 127: 512-520. |
12 | Xu H T, Miao Y B, Wang N, et al. Experimental investigations of heat transfer characteristics of MPCM during charging[J]. Applied Thermal Engineering, 2018, 144: 721-725. |
13 | Diaconu B M, Varga S, Oliveira A C. Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry[J]. Energy, 2010, 35(6): 2688-2693. |
14 | Bai Z R, Miao Y B, Xu H T, et al. Experimental study on thermal storage and heat transfer performance of microencapsulated phase-change material slurry[J]. Thermal Science and Engineering Progress, 2020, 17: 100362. |
15 | 卜令帅, 屈治国, 徐洪涛, 等. 相变微胶囊悬浮液储能系统放冷特性实验研究[J]. 化工学报, 2021, 72(8): 4064-4072. |
Bu L S, Qu Z G, Xu H T, et al. Experimental study of cooling discharging characteristics of the energy storage system filled with MPCM slurry[J]. CIESC Journal, 2021, 72(8): 4064-4072. | |
16 | Kong M, Alvarado J L, Terrell W, et al. Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2016, 101: 901-914. |
17 | Sabbah R, Farid M M, Al-Hallaj S. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study[J]. Applied Thermal Engineering, 2009, 29(2/3): 445-454. |
18 | 钟小龙, 刘东, 胥海伦. 微小管道内相变微胶囊悬浮液换热特性[J]. 化工学报, 2016, 67(S1): 203-209. |
Zhong X L, Liu D, Xu H L. Heat transfer characteristics of micro-encapsulated phase change material suspension in mini-tubes[J]. CIESC Journal, 2016, 67(S1): 203-209. | |
19 | Liu L K, Alva G, Jia Y T, et al. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage[J]. Energy and Buildings, 2017, 134: 37-51. |
20 | Qiu Z Z, Li L. Experimental and numerical investigation of laminar heat transfer of microencapsulated phase change material slurry (MPCMS) in a circular tube with constant heat flux[J]. Sustainable Cities and Society, 2020, 52: 101786. |
21 | Ma F, Chen J, Zhang P. Experimental study of the hydraulic and thermal performances of nano-sized phase change emulsion in horizontal mini-tubes[J]. Energy, 2018, 149: 944-953. |
22 | Zhang Y L, Wang S F, Rao Z H, et al. Experiment on heat storage characteristic of microencapsulated phase change material slurry[J]. Solar Energy Materials and Solar Cells, 2011, 95(10): 2726-2733. |
23 | Wang X C, Niu J L, Li Y, et al. Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2480-2491. |
24 | Yamagishi Y, Sugeno T, Ishige T, et al. An evaluation of microencapsulated PCM for use in cold energy transportation medium[C]//IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington, DC, USA: IEEE, 1996: 2077-2083. |
25 | Zhang X X, Fan Y F, Tao X M, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface Science, 2005, 281(2): 299-306. |
26 | Inaba H, Kim M J, Horibe A. Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microcapsules having different diameters[J]. Journal of Heat Transfer, 2004, 126(4): 558-565. |
27 | Zhang Y P, Jiang Y, Jiang Y. A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials[J]. Measurement Science and Technology, 1999, 10(3): 201-205. |
28 | Mar n J M, Zalba B N, Cabeza L F, et al. Determination of enthalpy temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties[J]. Measurement Science and Technology, 2003, 14(2): 184-189. |
29 | Xu Z, Xiao Y H, Wang Y. Experimental and theoretical studies on air humidification by a water spray for humid air turbine cycle[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. Barcelona, Spain, 2008: 385-393. |
30 | 胡先旭, 张寅平. 等壁温条件下潜热型功能热流体换热强化机理的理论研究[J]. 太阳能学报, 2002, 23(5): 626-633. |
Hu X X, Zhang Y P. Theoretical analysis of the convective heat transfer enhancement of latent functionally thermal fluid with isothermal wall[J]. Acta Energiae Solaris Sinica, 2002, 23(5): 626-633. | |
31 | 张方, 胥建群, 黄喜军. 基于PCMS流动和传热特性凝汽器的节水节能研究[J]. 中国电机工程学报, 2017, 37(10): 2905-2912. |
Zhang F, Xu J Q, Huang X J. Research on water and energy conservation of the condenser based on characteristics of flow and heat transfer of PCMS[J]. Proceedings of the CSEE, 2017, 37(10): 2905-2912. | |
32 | Xia Z Z, Chen C J, Wang R Z. Numerical simulation of a closed wet cooling tower with novel design[J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2367-2374. |
33 | Kloppers J C, Kröger D G. The Lewis factor and its influence on the performance prediction of wet-cooling towers[J]. International Journal of Thermal Sciences, 2005, 44(9): 879-884. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[7] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[15] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 400
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 311
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||