化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3659-3668.DOI: 10.11949/0438-1157.20220523
崔敬泽(), 汤琼, 陈晨, 刘宇婕, 徐红, 刘雷(), 董晋湘
收稿日期:
2022-04-11
修回日期:
2022-05-02
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
刘雷
作者简介:
崔敬泽(1997—),男,硕士研究生,515309165@qq.com
基金资助:
Jingze CUI(), Qiong TANG, Chen CHEN, Yujie LIU, Hong XU, Lei LIU(), Jinxiang DONG
Received:
2022-04-11
Revised:
2022-05-02
Online:
2022-08-05
Published:
2022-09-06
Contact:
Lei LIU
摘要:
目前润滑基础油主要来源于石油资源,基于我国富煤贫油的现状,开发煤基原料合成润滑基础油的工艺路线具有重要意义。以煤化工过程产生的多环芳烃(苊)和烯烃为原料,以离子液体([Et3NH][Al2Cl7])为催化剂通过烷基化反应探索了高黏度润滑基础油的合成。通过调控烯烃(己烯或辛烯)和苊的反应比例,合成了四种不同组成和结构的多烷基苊基础油,通过GC和GC-MS对其成分进行了分析。对不同油品的物化性能指标进行表征,揭示了产物组成结构和性质的关系,烷基苊基础油具有高的黏度(10.1~19.5 mm2·s-1,100℃)、苯胺点(<63℃)和起始氧化温度(>190℃);同时,烷基苊作为润滑基础油表现出优良的摩擦学性能,且随着苊环侧链烷基化程度的增加,其抗载荷能力会增强。
中图分类号:
崔敬泽, 汤琼, 陈晨, 刘宇婕, 徐红, 刘雷, 董晋湘. 高黏度烷基苊基础油的合成及润滑性能研究[J]. 化工学报, 2022, 73(8): 3659-3668.
Jingze CUI, Qiong TANG, Chen CHEN, Yujie LIU, Hong XU, Lei LIU, Jinxiang DONG. Synthesis of high viscosity alkylated acenaphthene and investigation of their lubrication property[J]. CIESC Journal, 2022, 73(8): 3659-3668.
样品名称 | 烯烃/苊 (摩尔比) | 产物分布/% | |||
---|---|---|---|---|---|
单烷 基苊 | 二烷 基苊 | 三烷 基苊 | 四烷 基苊 | ||
己基苊-2 | 2/1 | 22.60 | 54.50 | 22.39 | 0.51 |
己基苊-3 | 3/1 | 3.55 | 31.48 | 58.37 | 6.59 |
辛基苊-2 | 2/1 | 25.08 | 46.27 | 28.00 | 0.64 |
辛基苊-3 | 3/1 | 7.17 | 38.10 | 50.51 | 4.22 |
表1 己基苊和辛基苊的产物分布
Table 1 Product distribution of hexylacenaphthene and octylacenaphthene
样品名称 | 烯烃/苊 (摩尔比) | 产物分布/% | |||
---|---|---|---|---|---|
单烷 基苊 | 二烷 基苊 | 三烷 基苊 | 四烷 基苊 | ||
己基苊-2 | 2/1 | 22.60 | 54.50 | 22.39 | 0.51 |
己基苊-3 | 3/1 | 3.55 | 31.48 | 58.37 | 6.59 |
辛基苊-2 | 2/1 | 25.08 | 46.27 | 28.00 | 0.64 |
辛基苊-3 | 3/1 | 7.17 | 38.10 | 50.51 | 4.22 |
产品名称 | 密度/ (g·cm-3) | 运动黏度/(mm2·s-1) | 黏度指数 | 苯胺点/℃ | 倾点/℃ | 闪点/℃ | 起始氧化温度/℃ | |
---|---|---|---|---|---|---|---|---|
40℃ | 100℃ | |||||||
己基苊-2 | 0.9534 | 171.9 | 10.1 | — | 15.2 | -18 | 201 | 192 |
己基苊-3 | 0.9343 | 349.6 | 15.4 | — | 34.5 | -16 | 208 | 198 |
辛基苊-2 | 0.9372 | 190.5 | 12.5 | 24 | 38.5 | -23 | 219 | 201 |
辛基苊-3 | 0.9186 | 331.6 | 19.5 | 52 | 62.4 | -19 | 236 | 205 |
表2 烷基苊产物的基本物化性质
Table 2 Physicochemical properties of alkylated acenaphthenes
产品名称 | 密度/ (g·cm-3) | 运动黏度/(mm2·s-1) | 黏度指数 | 苯胺点/℃ | 倾点/℃ | 闪点/℃ | 起始氧化温度/℃ | |
---|---|---|---|---|---|---|---|---|
40℃ | 100℃ | |||||||
己基苊-2 | 0.9534 | 171.9 | 10.1 | — | 15.2 | -18 | 201 | 192 |
己基苊-3 | 0.9343 | 349.6 | 15.4 | — | 34.5 | -16 | 208 | 198 |
辛基苊-2 | 0.9372 | 190.5 | 12.5 | 24 | 38.5 | -23 | 219 | 201 |
辛基苊-3 | 0.9186 | 331.6 | 19.5 | 52 | 62.4 | -19 | 236 | 205 |
图5 己基苊-2(a)、己基苊-3(b)、辛基苊-2(c)和辛基苊-3(d)在钢盘上的接触角
Fig.5 Contact angle of hexylacenaphthene-2 (a), hexylacenaphthene-3 (b), octylacenaphthene-2 (c) and octylacenaphthene-3 (d) on steel disc
图7 在100 N(a)、200 N(b)和300 N(c)载荷下的摩擦曲线和平均摩擦系数(d)
Fig.7 Friction curves under the load of 100 N (a), 200 N (b) and 300 N (c) and average friction coefficient (d)
1 | Holmberg K, Erdemir A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars[J]. Tribology International, 2019, 135: 389-396. |
2 | Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions[J]. Friction, 2017, 5(3): 263-284. |
3 | Fan M J, Ai J, Hu C H, et al. Naphthoate based lubricating oil with high oxidation stability and lubricity[J]. Tribology International, 2019, 138: 204-210. |
4 | Liu S B, Bhattacharjee R, Li S, et al. Thiol-promoted catalytic synthesis of high-performance furan-containing lubricant base oils from biomass derived 2-alkylfurans and ketones[J]. Green Chemistry, 2020, 22(22): 7896-7906. |
5 | Fox I E. Numerical evaluation of the potential for fuel economy improvement due to boundary friction reduction within heavy-duty diesel engines[J]. Tribology International, 2005, 38(3): 265-275. |
6 | Hu S J, Zhu J H, Wu B C, et al. Green synthesis of ester base oil with high viscosity(Ⅰ): Catalyst preparation, characterization, evaluation, and mechanism analysis[J]. Fuel, 2020, 274: 117802. |
7 | Jiang H B, Xu X L, Hong X Z, et al. Preparation of high viscosity PAO from mixed alpha-olefins over metallocene catalyst[J]. China Petroleum Processing & Petrochemical Technology, 2018, 20(2): 90-96. |
8 | Hu S J, Zhu J H, Wu B C, et al. Green synthesis of ester base oil with high viscosity(Ⅱ): Reaction kinetics study[J]. Chemical Engineering Research and Design, 2021, 165: 51-60. |
9 | Li L, Zhao X R, Chen C, et al. Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil[J]. ChemistrySelect, 2019, 4(18): 5284-5290. |
10 | Chen C, Tang Q, Xu H, et al. Alkylation of naphthalene with n-butene catalyzed by liquid coordination complexes and its lubricating properties[J]. Chinese Journal of Chemical Engineering, 2021, 39: 306-313. |
11 | Nagendramma P, Kaul S. Development of ecofriendly/biodegradable lubricants: an overview[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 764-774. |
12 | Yang T, Wang F J, Huang J P, et al. Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system[J]. Reaction Chemistry & Engineering, 2021, 6(10): 1950-1960. |
13 | Granda M, Blanco C, Alvarez P, et al. Chemicals from coal coking[J]. Chemical Reviews, 2014, 114(3): 1608-1636. |
14 | 谷小会. 煤焦油分离方法及组分性质研究现状与展望[J]. 洁净煤技术, 2018, 24(4): 1-6, 12. |
Gu X H. Status and prospect of separation methods and composition characteristics of coal tar[J]. Clean Coal Technology, 2018, 24(4): 1-6, 12. | |
15 | Ma Z H, Wei X Y, Liu G H, et al. Value-added utilization of high-temperature coal tar: a review[J]. Fuel, 2021, 292: 119954. |
16 | 汪廷贵, 张乐涛, 蔡国星, 等. 一种烷基萘基础油的合成及润滑性能研究[J]. 石油炼制与化工, 2013, 44(11): 96-99. |
Wang T G, Zhang L T, Cai G X, et al. Study on synthesis of alkyl naphthalene base oils and their lubricating properties[J]. Petroleum Processing and Petrochemicals, 2013, 44(11): 96-99. | |
17 | 刘雷, 陈晨, 李磊, 等. 一种利用离子液体催化制备多烷基萘的方法及其应用: 109824467A[P]. 2019-05-31. |
Liu L, Chen C, Li L, et al. Method for preparing polyalkylnaphthalene through catalysis of ionic liquid and application of method: 109824467A[P]. 2019-05-31. | |
18 | Peters A T. Acenaphthene series(Ⅰ): Mono- and di-tert.-butyl-acenaphthene, -acenaphthenequinone, and -naphthalic anhydride, and their derivatives[J]. Journal of the Chemical Society (Resumed), 1942: 562-565. |
19 | Nürsten H E, Peters A T. Acenaphthene series(Ⅲ): Orientation of tert.-butyl- and di-tert.-butyl-acenaphthene, and preparation of new derivatives[J]. Journal of the Chemical Society(Resumed), 1950: 729-736. |
20 | Illingworth E, Peters A T. Acenaphthene series(Ⅶ): The three isomeric tert.-butylacenaphthenes. Migration of tert.-butyl groups and disproportionation. Preparation and orientation of 1,3,6-tri-tert.-butylacenaphthene[J]. Journal of the Chemical Society (Resumed), 1952: 2730-2735. |
21 | Peters A T. Mechanisms of reactions in the acenaphthene series. Migration of t-butyl, and disproportionate[J]. Nature, 1965, 205(4967): 170-171. |
22 | Mock W L, Tsao L I. Isopropylation of acenaphthene[J]. Synthetic Communications, 1991, 21(3): 371-378. |
23 | Chen S, Wu T T, Zhao C. Conversion of lipid into high-viscosity branched bio-lubricant base oil[J]. Green Chemistry, 2020, 22(21): 7348-7354. |
24 | Covitch M J, Trickett K J. How polymers behave as viscosity index improvers in lubricating oils[J]. Advances in Chemical Engineering and Science, 2015, 5(2): 134-151. |
25 | Martini A, Ramasamy U S, Len M. Review of viscosity modifier lubricant additives[J]. Tribology Letters, 2018, 66(2): 1-14. |
26 | Fan M J, Zhang C Y, Wen P, et al. High-performance lubricant base stocks from biorenewable Gallic acid: systematic study on their physicochemical and tribological properties[J]. Industrial & Engineering Chemistry Research, 2017, 56(34): 9513-9523. |
27 | Zhmud B. Beyond the aniline point: critical solution point for the oil/aniline system as a measure of oil solubility[J]. Fuel, 2007, 86(16): 2545-2550. |
28 | Elhamarnah Y A, Nasser M, Qiblawey H, et al. A comprehensive review on the rheological behavior of imidazolium based ionic liquids and natural deep eutectic solvents[J]. Journal of Molecular Liquids, 2019, 277: 932-958. |
29 | Zhou S Q, Ni R, Funfschilling D. Effects of shear rate and temperature on viscosity of alumina polyalphaolefins nanofluids[J]. Journal of Applied Physics, 2010, 107(5): 054317. |
30 | Kerni L, Raina A, Haq M I U. Friction and wear performance of olive oil containing nanoparticles in boundary and mixed lubrication regimes[J]. Wear, 2019, 426/427: 819-827. |
31 | Liu X X, Li Q, Gao X X, et al. The palm oil-based microemulsion: fabrication, characterization and rheological properties[J]. Journal of Molecular Liquids, 2020, 302: 112527. |
32 | Jiang D, Hu L T, Feng D P. Crown-type ionic liquids as lubricants for steel-on-steel system[J]. Tribology Letters, 2011, 41(2): 417-424. |
33 | Mendonça A C F, Malfreyt P, Pádua A A H. Interactions and ordering of ionic liquids at a metal surface[J]. Journal of Chemical Theory and Computation, 2012, 8(9): 3348-3355. |
34 | Yu Q L, Zhang C Y, Dong R, et al. Physicochemical and tribological properties of gemini-type halogen-free dicationic ionic liquids[J]. Friction, 2021, 9(2): 344-355. |
35 | Guo Y X, Qiao D, Han Y Y, et al. Application of alkylphosphate ionic liquids as lubricants for ceramic material[J]. Industrial & Engineering Chemistry Research, 2015, 54(51): 12813-12825. |
[1] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[2] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[3] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[6] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[7] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[8] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[9] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[10] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[11] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[12] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[13] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[14] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[15] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||