化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4113-4121.DOI: 10.11949/0438-1157.20220414
邓靖1(), 杨庆云1, 陈民杰1, 李青松2,3(), 杨帆1, 陈国元2, 李国新2
收稿日期:
2022-03-24
修回日期:
2022-05-16
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
李青松
作者简介:
邓靖(1980—),男,博士,副教授,zjut_djing@163.com
基金资助:
Jing DENG1(), Qingyun YANG1, Minjie CHEN1, Qingsong LI2,3(), Fan YANG1, Guoyuan CHEN2, Guoxin LI2
Received:
2022-03-24
Revised:
2022-05-16
Online:
2022-09-05
Published:
2022-10-09
Contact:
Qingsong LI
摘要:
采用UV-LED/NaClO工艺降解水中尼泊金甲酯(MeP),通过竞争动力学的方法确定了MeP与HO·、
中图分类号:
邓靖, 杨庆云, 陈民杰, 李青松, 杨帆, 陈国元, 李国新. UV-LED/NaClO工艺降解尼泊金甲酯:不同活性物种的作用[J]. 化工学报, 2022, 73(9): 4113-4121.
Jing DENG, Qingyun YANG, Minjie CHEN, Qingsong LI, Fan YANG, Guoyuan CHEN, Guoxin LI. Degradation of methylparaben by UV-LED/NaClO process: the role of different active species[J]. CIESC Journal, 2022, 73(9): 4113-4121.
图1 UV-LED、NaClO、UV-LED/NaClO、UV-LED/H2O2、UV-LED/PS和UV-LED/PMS对MeP的去除[MeP]0=5 μmol/L, [NaClO]=[H2O2]=[PS]=[PMS]=75 μmol/L, pH=(7.0±0.2)
Fig.1 Degradation of MeP during UV-LED irradiation, NaClO, UV-LED/NaClO, UV-LED/H2O2, UV-LED/PS and UV-LED/PMS processes
图5 HA投加量对UV-LED/NaClO工艺中不同物种去除MeP贡献的影响[MeP]0=5 μmol/L, [NaClO]0=75 μmol/L, pH=(7.0±0.2)
Fig.5 Contribution of different species to degradation of MeP during UV-LED/NaClO process at different HA dosages
图6 阴离子对UV-LED/NaClO工艺去除MeP的影响[MeP]0=5 μmol/L, [NaClO]0=75 μmol/L, pH=(7.0±0.2)
Fig.6 Effect of inorganic anions on MeP degradation in UV-LED/NaClO process
图7 MeP和DMA在UV-LED/H2O2/HCO3-工艺中的降解[MeP]0=[DMA]0=5 μmol/L, [H2O2]=500 μmol/L, [HCO3-]=10 mmol/L, pH=(7.0±0.2)
Fig.7 Degradation of MeP and DMA in UV-LED/H2O2/HCO3- process
图9 UV-LED/NaClO工艺降解MeP的矿化率和DBPs生成[MeP]0=5 μmol/L, [NaClO]= [Br-]=75 μmol/L, pH=(7.0±0.2)
Fig.9 The mineralization and DBPs formation in UV-LED/NaClO processes
图10 UV-LED/NaClO工艺降解MeP过程中急性毒性变化[MeP]0=5 μmol/L, [NaClO]= [Br-]=75 μmol/L, pH=(7.0±0.2)
Fig.10 Evolution of acute toxicity on MeP degradation during UV-LED/NaClO processes
1 | Yang Y, Ok Y S, Kim K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review[J]. Science of the Total Environment, 2017, 596-597: 303-320. |
2 | 王丹丹, 张婧, 杨桂朋, 等. 药物及个人护理品的污染现状、分析技术及生态毒性研究进展[J]. 环境科学研究, 2018, 31(12): 2013-2020. |
Wang D D, Zhang J, Yang G P, et al. Pollution status, analytical techniques and ecotoxicity of pharmaceuticals and personal care products (PPCPs)[J]. Research of Environmental Sciences, 2018, 31(12): 2013-2020. | |
3 | Miklos D B, Remy C, Jekel M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment — a critical review[J]. Water Research, 2018, 139: 118-131. |
4 | 陈智锋. 典型杀生剂在受纳水环境与受纳土壤环境中的污染特征、环境行为及其生态风险研究[D]. 广州:中国科学院大学, 2014. |
Chen Z F. Occurrence fate and risk of biocides in the receiving rivers and biosolid-amended soils in China[D]. Guangzhou:University of Chinese Academy of Sciences, 2014. | |
5 | Álvarez-Ruiz R, Picó Y, Alfarhan A H, et al. Dataset of pesticides, pharmaceuticals and personal care products occurrence in wetlands of Saudi Arabia[J]. Data Brief, 2020, 31: 105776. |
6 | Luis Malvar J, Luis Santos J, Martín J, et al. Occurrence of the main metabolites of pharmaceuticals and personal care products in sludge stabilization treatments[J]. Waste Management, 2020, 116: 22-30. |
7 | Zou X Y, Lin Y L, Xu B, et al. Enhanced ronidazole degradation by UV-LED/chlorine compared with conventional low-pressure UV/chlorine at neutral and alkaline pH values[J]. Water Research, 2019, 160: 296-303. |
8 | Matafonova G, Batoev V. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: a review[J]. Water Research, 2018, 132: 177-189. |
9 | Wu Z H, Fang J Y, Xiang Y Y, et al. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: kinetics and transformation pathways[J]. Water Research, 2016, 104: 272-282. |
10 | Guo K H, Wu Z H, Yan S W, et al. Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: kinetics, radical mechanism and energy requirements[J]. Water Research, 2018, 147: 184-194. |
11 | Wang A N, Hua Z C, Wu Z H, et al. Insights into the effects of bromide at fresh water levels on the radical chemistry in the UV/peroxydisulfate process[J]. Water Research, 2021, 197: 117042. |
12 | Zhang X W, Guo K H, Wang Y G, et al. Roles of bromine radicals, HOBr and Br2 in the transformation of flumequine by the UV/chlorine process in the presence of bromide[J]. Chemical Engineering Journal, 2020, 400: 125222. |
13 | Ma J Y, Minakata D, O’Shea K, et al. Determination and environmental implications of aqueous-phase rate constants in radical reactions[J]. Water Research, 2021, 190: 116746. |
14 | Deng J, Wu G X, Yuan S J, et al. Ciprofloxacin degradation in UV/chlorine advanced oxidation process: influencing factors, mechanisms and degradation pathways[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371: 151-158. |
15 | 李博强, 马晓雁, 李青松, 等. UV-LED/NaClO工艺对水中对乙酰氨基酚的降解[J]. 中国环境科学, 2019, 39(11): 4681-4688. |
Li B Q, Ma X Y, Li Q S, et al. Degradation of acetaminophen in aqueous by UV-LED/NaClO process[J]. China Environmental Science, 2019, 39(11): 4681-4688. | |
16 | Xiong R H, Lu Z J, Tang Q, et al. UV-LED/chlorine degradation of propranolol in water: degradation pathway and product toxicity[J]. Chemosphere, 2020, 248: 125957. |
17 | Cai W W, Peng T, Yang B, et al. Kinetics and mechanism of reactive radical mediated fluconazole degradation by the UV/chlorine process: experimental and theoretical studies[J]. Chemical Engineering Journal, 2020, 402: 126224. |
18 | Wang W L, Wu Q Y, Huang N, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species[J]. Water Research, 2016, 98: 190-198. |
19 | Gao Z C, Lin Y L, Xu B, et al. Evaluating iopamidol degradation performance and potential dual-wavelength synergy by UV-LED irradiation and UV-LED/chlorine treatment[J]. Chemical Engineering Journal, 2019, 360: 806-816. |
20 | Kong Q Q, Lei X, Zhang X R, et al. The role of chlorine oxide radical (ClO·) in the degradation of polychoro-1,3-butadienes in UV/chlorine treatment: kinetics and mechanisms[J]. Water Research, 2020, 183: 116056. |
21 | Yao H, Pei J, Wang H, et al. Effect of Fe(Ⅱ/Ⅲ) on tetracycline degradation under UV/VUV irradiation[J]. Chemical Engineering Journal, 2017, 308: 193-201. |
22 | Xu M Y, Deng J, Cai A H, et al. Synergistic effects of UVC and oxidants (PS vs. chlorine) on carbamazepine attenuation: mechanism, pathways, DBPs yield and toxicity assessment[J]. Chemical Engineering Journal, 2021, 413: 127533. |
23 | Kalsoom U, Ashraf S S, Meetani M A, et al. Degradation and kinetics of H2O2 assisted photochemical oxidation of remazol turquoise blue[J]. Chemical Engineering Journal, 2012, 200/201/202: 373-379. |
24 | Liu W, Li Y Y, Liu F Y, et al. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: mechanisms, degradation pathway and DFT calculation[J]. Water Research, 2019, 151: 8-19. |
25 | Lian L S, Yao B, Hou S D, et al. Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents[J]. Environmental Science & Technology, 2017, 51(5): 2954-2962. |
26 | Wojnárovits L, Tóth T, Takács E. Rate constants of carbonate radical anion reactions with molecules of environmental interest in aqueous solution: a review[J]. Science of The Total Environment, 2020, 717: 137219. |
27 | Zeng T, Arnold W A. Pesticide photolysis in prairie potholes: probing photosensitized processes[J]. Environmental Science & Technology, 2013, 47(13): 6735-6745. |
28 | Yeom Y, Han J R, Zhang X R, et al. A review on the degradation efficiency, DBP formation, and toxicity variation in the UV/chlorine treatment of micropollutants[J]. Chemical Engineering Journal, 2021, 424: 130053. |
29 | Cheng S S, Zhang X R, Yang X, et al. The multiple role of bromide ion in PPCPs degradation under UV/chlorine treatment[J]. Environmental Science & Technology, 2018, 52(4): 1806-1816. |
30 | Wang Y, Li H Y, Yi P, et al. Degradation of clofibric acid by UV, O3 and UV/O3 processes: performance comparison and degradation pathways[J]. Journal of Hazardous Materials, 2019, 379: 120771. |
31 | Coha M, Farinelli G, Tiraferri A, et al. Advanced oxidation processes in the removal of organic substances from produced water: potential, configurations, and research needs[J]. Chemical Engineering Journal, 2021, 414: 128668. |
32 | Gao Z C, Lin Y L, Xu B, et al. Degradation of acrylamide by the UV/chlorine advanced oxidation process[J]. Chemosphere, 2017, 187: 268-276. |
33 | Dionisio D, Santos L H E, Rodrigo M A, et al. Electro-oxidation of methyl paraben on DSA®-Cl2: UV irradiation, mechanistic aspects and energy consumption[J]. Electrochimica Acta, 2020, 338: 135901. |
34 | Hua Z C, Li D, Wu Z H, et al. DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide[J]. Water Research, 2021, 188: 116549. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[7] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[8] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[9] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[10] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[11] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[12] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[13] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[14] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[15] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 84
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 195
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||