化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4252-4266.DOI: 10.11949/0438-1157.20230747
张金鹏(), 王强, 王艳美, 严舒, 吴建波, 张慧, 白红存()
收稿日期:
2023-07-18
修回日期:
2023-09-09
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
白红存
作者简介:
张金鹏(1997—),女,硕士研究生,2719659225@qq.com
基金资助:
Jinpeng ZHANG(), Qiang WANG, Yanmei WANG, Shu YAN, Jianbo WU, Hui ZHANG, Hongcun BAI()
Received:
2023-07-18
Revised:
2023-09-09
Online:
2023-10-25
Published:
2023-12-22
Contact:
Hongcun BAI
摘要:
化学链燃烧(CLC)技术是全球深刻变革时期能源清洁加工和高效转化的重要研究方向。煤等固体燃料和载氧体的反应是CLC研究的核心科学问题之一。然而,其作用规律及转化机制仍不明确,尤其缺乏从原子分子尺度上理解煤等大分子固体在燃料反应器中分子结构演变和官能团转化的微观尺度描述。基于煤的大分子结构和反应力场分子动力学(ReaxFF MD)模拟,研究了宁夏庆华(QH)和羊场湾(YCW)煤与氧化镍载氧体的化学链燃烧过程。通过QH-NiO和YCW-NiO体系的CLC过程分析总结获得了体系总能量、总分子数、产物分布和气体转化率的规律。基于ReaxFF MD模拟过程直接获得了煤的大分子结构在CLC过程中的动态演化过程。随着CLC反应的进行,煤的大分子结构由于旧键断裂和新键生成逐步解离生成各种中间产物、CO x 、H2O等小分子。揭示了QH-NiO和YCW-NiO体系CLC过程中载氧体释氧量和释氧速率的规律和影响机制。结果显示,相较于QH煤,YCW煤的变质程度较低,反应活性较高。因此,YCW-NiO体系总势能更低、生成的分子片段数较多,且生成非烃气体的含量也较多,可使载氧体更早开始释放晶格氧。随着CLC反应的进行,载氧体表面形成氧空位导致次外层和内部的晶格氧向表面迁移并释放。
中图分类号:
张金鹏, 王强, 王艳美, 严舒, 吴建波, 张慧, 白红存. 镍基载氧体化学链燃烧过程中宁夏QH和YCW煤分子结构演化特征及对比分析[J]. 化工学报, 2023, 74(10): 4252-4266.
Jinpeng ZHANG, Qiang WANG, Yanmei WANG, Shu YAN, Jianbo WU, Hui ZHANG, Hongcun BAI. Molecular structure evolution characteristics and comparative analysis of Ningxia QH and YCW coal with nickel based oxygen carriers during chemical looping combustion[J]. CIESC Journal, 2023, 74(10): 4252-4266.
Energy | QH-NiO | YCW-NiO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2.50 ps | 141.29 ps | 149.98 ps | 177.94 ps | 206.23 ps | 2.50 ps | 162.51 ps | 181.46 ps | 189.10 ps | 200.94 ps | |
Ebond | -405260.85 | -400409.50 | -399647.46 | -396741.22 | -394454.47 | -420824.09 | -407444.97 | -412548.95 | -410458.40 | -413046.51 |
Eatom | 35249.16 | 35397.52 | 35632.76 | 36320.55 | 39013.04 | 34721.43 | 37434.80 | 41389.81 | 40327.19 | 40923.38 |
Elp | 0.00 | 8.70 | 58.17 | 222.48 | 231.12 | -0.01 | 561.10 | 417.12 | 216.32 | 246.01 |
Eval | 21632.75 | 20827.14 | 20355.03 | 19733.17 | 18679.09 | 22725.43 | 20052.98 | 18624.00 | 17786.54 | 17722.19 |
Ecoa | -5.39 | -61.85 | -51.43 | -66.65 | -59.89 | -34.62 | -53.74 | -36.77 | -39.40 | -35.07 |
Etors | 602.57 | 610.94 | 527.79 | 476.79 | 71.04 | 784.46 | 218.47 | 65.34 | 90.15 | 73.61 |
Econj | -965.63 | -596.13 | -574.40 | -289.33 | -19.07 | -1060.33 | -69.42 | -16.50 | -18.75 | -23.55 |
EV | -348747.39 | -344223.18 | -343699.54 | -340344.20 | -336539.14 | -363687.74 | -881784.93 | -880421.04 | -879689.20 | -878713.62 |
Ehbo | -0.09 | -47.08 | -71.90 | -90.64 | -109.79 | -16.57 | -135.38 | -156.66 | -160.24 | -145.57 |
Evdw | 82260.99 | 79920.48 | 78467.16 | 76039.78 | 73536.67 | 85920.63 | 76732.80 | 76378.11 | 75893.95 | 77186.78 |
Ecoul | -41279.20 | -38711.20 | -38727.26 | -39177.34 | -39485.44 | -39898.09 | -41235.77 | -41107.65 | -40451.18 | -40284.27 |
Echarge | 21614.07 | 19485.45 | 19431.56 | 19595.35 | 19735.52 | 20240.72 | 20841.27 | 20707.00 | 20176.55 | 20094.77 |
EN | 62595.78 | 60647.64 | 59099.56 | 56367.15 | 53676.96 | 66246.69 | 56202.92 | 55820.81 | 55459.07 | 56851.71 |
Esystem | -286151.61 | -283575.54 | -284599.99 | -283977.04 | -282862.18 | -297441.04 | -825582.01 | -824600.23 | -824230.13 | -821861.91 |
表1 2500 K下QH-NiO和YCW-NiO体系CLC过程吸热峰的能量分解分析
Table 1 Energy decomposition analysis of QH-NiO and YCW-NiO endothermic peak during CLC process at 2500 K
Energy | QH-NiO | YCW-NiO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2.50 ps | 141.29 ps | 149.98 ps | 177.94 ps | 206.23 ps | 2.50 ps | 162.51 ps | 181.46 ps | 189.10 ps | 200.94 ps | |
Ebond | -405260.85 | -400409.50 | -399647.46 | -396741.22 | -394454.47 | -420824.09 | -407444.97 | -412548.95 | -410458.40 | -413046.51 |
Eatom | 35249.16 | 35397.52 | 35632.76 | 36320.55 | 39013.04 | 34721.43 | 37434.80 | 41389.81 | 40327.19 | 40923.38 |
Elp | 0.00 | 8.70 | 58.17 | 222.48 | 231.12 | -0.01 | 561.10 | 417.12 | 216.32 | 246.01 |
Eval | 21632.75 | 20827.14 | 20355.03 | 19733.17 | 18679.09 | 22725.43 | 20052.98 | 18624.00 | 17786.54 | 17722.19 |
Ecoa | -5.39 | -61.85 | -51.43 | -66.65 | -59.89 | -34.62 | -53.74 | -36.77 | -39.40 | -35.07 |
Etors | 602.57 | 610.94 | 527.79 | 476.79 | 71.04 | 784.46 | 218.47 | 65.34 | 90.15 | 73.61 |
Econj | -965.63 | -596.13 | -574.40 | -289.33 | -19.07 | -1060.33 | -69.42 | -16.50 | -18.75 | -23.55 |
EV | -348747.39 | -344223.18 | -343699.54 | -340344.20 | -336539.14 | -363687.74 | -881784.93 | -880421.04 | -879689.20 | -878713.62 |
Ehbo | -0.09 | -47.08 | -71.90 | -90.64 | -109.79 | -16.57 | -135.38 | -156.66 | -160.24 | -145.57 |
Evdw | 82260.99 | 79920.48 | 78467.16 | 76039.78 | 73536.67 | 85920.63 | 76732.80 | 76378.11 | 75893.95 | 77186.78 |
Ecoul | -41279.20 | -38711.20 | -38727.26 | -39177.34 | -39485.44 | -39898.09 | -41235.77 | -41107.65 | -40451.18 | -40284.27 |
Echarge | 21614.07 | 19485.45 | 19431.56 | 19595.35 | 19735.52 | 20240.72 | 20841.27 | 20707.00 | 20176.55 | 20094.77 |
EN | 62595.78 | 60647.64 | 59099.56 | 56367.15 | 53676.96 | 66246.69 | 56202.92 | 55820.81 | 55459.07 | 56851.71 |
Esystem | -286151.61 | -283575.54 | -284599.99 | -283977.04 | -282862.18 | -297441.04 | -825582.01 | -824600.23 | -824230.13 | -821861.91 |
Time/ps | Number of QH-NiO oxygen release | Number of YCW-NiO oxygen release | ||||||
---|---|---|---|---|---|---|---|---|
1st and 6th layer | 2nd and 5th layer | 3rd and 4th layer | Sum of a period | 1st and 6th layer | 2nd and 5th layer | 3rd and 4th layer | Sum of a period | |
0—50 | 29(7.25%) | 27(6.75%) | 18(4.50%) | 74(6.17%) | 23(5.75%) | 19(4.75%) | 14(3.50%) | 57(4.75%) |
50—100 | 13(3.25%) | 10(2.50%) | 9(2.25%) | 32(2.67%) | 14(3.50%) | 16(4.00%) | 15(3.75%) | 45(3.75%) |
100—150 | 10(2.50%) | 7(1.75%) | 7(1.75%) | 24(2.00%) | 14(3.50%) | 9(2.25%) | 11(2.75%) | 34(2.83%) |
150—200 | 14(3.50%) | 25(6.25%) | 34(8.50%) | 73(6.08%) | 38(9.50%) | 35(8.75%) | 45(11.25%) | 118(9.83%) |
200—250 | 34(8.50%) | 24(6.00%) | 35(8.75%) | 93(7.75%) | 26(6.50%) | 19(4.75%) | 19(4.75%) | 64(5.33%) |
Sum of layers | 100(25.00%) | 93(23.25%) | 103(25.75%) | 296(24.67%) | 115(28.75%) | 98(24.5%) | 105(26.25%) | 318(26.50%) |
表2 QH-NiO和YCW-NiO体系在2500 K化学链燃烧过程的释放晶格氧量
Table 2 The amounts of QH-NiO and YCW-NiO lattice oxygen release during CLC at 2500 K
Time/ps | Number of QH-NiO oxygen release | Number of YCW-NiO oxygen release | ||||||
---|---|---|---|---|---|---|---|---|
1st and 6th layer | 2nd and 5th layer | 3rd and 4th layer | Sum of a period | 1st and 6th layer | 2nd and 5th layer | 3rd and 4th layer | Sum of a period | |
0—50 | 29(7.25%) | 27(6.75%) | 18(4.50%) | 74(6.17%) | 23(5.75%) | 19(4.75%) | 14(3.50%) | 57(4.75%) |
50—100 | 13(3.25%) | 10(2.50%) | 9(2.25%) | 32(2.67%) | 14(3.50%) | 16(4.00%) | 15(3.75%) | 45(3.75%) |
100—150 | 10(2.50%) | 7(1.75%) | 7(1.75%) | 24(2.00%) | 14(3.50%) | 9(2.25%) | 11(2.75%) | 34(2.83%) |
150—200 | 14(3.50%) | 25(6.25%) | 34(8.50%) | 73(6.08%) | 38(9.50%) | 35(8.75%) | 45(11.25%) | 118(9.83%) |
200—250 | 34(8.50%) | 24(6.00%) | 35(8.75%) | 93(7.75%) | 26(6.50%) | 19(4.75%) | 19(4.75%) | 64(5.33%) |
Sum of layers | 100(25.00%) | 93(23.25%) | 103(25.75%) | 296(24.67%) | 115(28.75%) | 98(24.5%) | 105(26.25%) | 318(26.50%) |
1 | Liu D Y, Wang C R, Fan Y P, et al. Mercury transformation and removal in chemical looping combustion of coal: a review[J]. Fuel, 2023, 347: 128440. |
2 | Fan L S, Zeng L, Wang W, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion—prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6): 7254-7280. |
3 | Richter H J, Knoche K F. Reversibility of combustion processes[M]//Gaggioli R A. ACS Symposium Series. Washington, D.C.: American Chemical Society, 1983: 71-85. |
4 | Wang B W, Wang W S, Ma Q A, et al. In-depth investigation of chemical looping combustion of a Chinese bituminous coal with CuFe2O4 combined oxygen carrier[J]. Energy & Fuels, 2016, 30(3): 2285-2294. |
5 | Liu T, Yu Z L, Jiao F C, et al. Effect of preparation conditions on the performance of K-decorated Fe2O3/Al2O3 oxygen carrier (OC) in chemical looping conversion of coal process with deep OC reduction[J]. Journal of the Energy Institute, 2021, 98: 179-187. |
6 | Yan J C, Shen T X, Wang P, et al. Redox performance of manganese ore in a fluidized bed thermogravimetric analyzer for chemical looping combustion[J]. Fuel, 2021, 295: 120564. |
7 | Miao Z W, Shen L H, Li Z S, et al. Sintering and agglomeration characteristics of industrially prepared CaMn0.5Ti0.375Fe0.125O3- δ perovskite oxygen carrier in chemical looping combustion[J]. Chemical Engineering Journal, 2023, 472: 144722. |
8 | Daneshmand-Jahromi S, Sedghkerdar M H, Mahinpey N. A review of chemical looping combustion technology: fundamentals, and development of natural, industrial waste, and synthetic oxygen carriers[J]. Fuel, 2023, 341: 127626. |
9 | Chen H, Cheng M, Liu L, et al. Coal-fired chemical looping combustion coupled with a high-efficiency annular carbon stripper[J]. International Journal of Greenhouse Gas Control, 2020, 93: 102889. |
10 | Xiao R, Chen L Y, Saha C, et al. Pressurized chemical-looping combustion of coal using an iron ore as oxygen carrier in a pilot-scale unit[J]. International Journal of Greenhouse Gas Control, 2012, 10: 363-373. |
11 | Bayham S, McGiveron O, Tong A, et al. Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal[J]. Applied Energy, 2015, 145: 354-363. |
12 | Berguerand N, Lyngfelt A. Design and operation of a 10 kWth chemical-looping combustor for solid fuels—testing with South African coal[J]. Fuel, 2008, 87(12): 2713-2726. |
13 | Ma J C, Zhao H B, Tian X, et al. Chemical looping combustion of coal in a 3 kWth interconnected fluidized bed reactor using hematite as oxygen carrier[J]. Applied Energy, 2015, 157: 304-313. |
14 | 袁鹏星, 郭庆杰, 胡修德, 等. 3 MWth煤化学链气化商业示范装置的自热运行和参数分析[J]. 过程工程学报, 2023, 23(4): 616-626. |
Yuan P X, Guo Q J, Hu X D, et al. Autothermal operation and parametric analysis of commercial demonstration unit of 3 MWth coal chemical looping gasification[J]. The Chinese Journal of Process Engineering, 2023, 23(4): 616-626. | |
15 | 沈天绪, 沈来宏. 基于3 kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
Shen T X, Shen L H. Investigation of multi-fuel chemical looping combustion in a 3 kW interconnected fluidized bed reactors[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 138-147. | |
16 | Mathews J P, Chaffee A L. The molecular representations of coal—a review[J]. Fuel, 2012, 96: 1-14. |
17 | Shi K Y, Gui X H, Tao X X, et al. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy & Fuels, 2015, 29(6): 3566-3572. |
18 | Yang Z Y, Yin Z Q, Xue W Y, et al. Construction of buertai coal macromolecular model and GCMC simulation of methane adsorption in micropores[J]. ACS Omega, 2021, 6(17): 11173-11182. |
19 | Ding C, Li Z X, Hu D J, et al. Construction of macromolecular model and analysis of oxygen absorption characteristics of Hongyang No. 2 coal mine[J]. Arabian Journal of Chemistry, 2023, 16(5): 104662. |
20 | Xiang J H, Zeng F G, Liang H Z, et al. Model construction of the macromolecular structure of Yanzhou Coal and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 481-488. |
21 | Liu S H, Wei L H, Zhou Q, et al. Simulation strategies for ReaxFF molecular dynamics in coal pyrolysis applications: a review[J]. Journal of Analytical and Applied Pyrolysis, 2023, 170: 105882. |
22 | Hong D K, Guo X. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210: 58-66. |
23 | Zhang K, Li Y, Wang Z H, et al. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel, 2016, 185: 701-708. |
24 | Wang Y H, Lian J, Xue Y, et al. The pyrolysis of vitrinite and inertinite by a combination of quantum chemistry calculation and thermogravimetry-mass spectrometry[J]. Fuel, 2020, 264: 116794. |
25 | Burger C M, Zhang A J, Xu Y J, et al. Plasma-assisted chemical-looping combustion: low-temperature methane and ethylene oxidation with nickel oxide[J]. The Journal of Physical Chemistry A, 2023, 127(3): 789-798. |
26 | 王翠苹, 梁文政, 王坤, 等. 基于铁基载氧体的污泥化学结构热解分子动力学模拟[J]. 洁净煤技术, 2022, 28(3): 139-149. |
Wang C P, Liang W Z, Wang K, et al. Molecular dynamics simulation of chemical structure pyrolysis of sludge based on iron-based oxygen carrier[J]. Clean Coal Technology, 2022, 28(3): 139-149. | |
27 | Meng L L, Zhu Y, Zhu M L, et al. Exploring depolymerization mechanism and complex reaction networks of aromatic structures in chemical looping combustion via ReaxFF MD simulations[J]. Journal of the Energy Institute, 2023, 107: 101180. |
28 | 郭文倩, 蒙亮亮, 耿畅, 等. 铁基载氧体纤维素化学链解聚试验及分子模拟[J]. 洁净煤技术, 2023, 29(4): 137-147. |
Guo W Q, Meng L L, Geng C, et al. Experiment and molecular simulation of cellulose during chemical looping depolymerization with iron-based oxygen carriers[J]. Clean Coal Technology, 2023, 29(4): 137-147. | |
29 | 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 176-180. |
Xie K C. Coal Structure and Its Reactivity[M]. Beijing: Science Press, 2002: 176-180. | |
30 | Wang Q, Zhang J P, Li H N, et al. Exploring molecular structure characteristics and chemical index of Qinghua bituminous coal: a comprehensive insight from single molecule of macerals to particles with various sizes[J]. Powder Technology, 2022, 396: 36-49. |
31 | 王强, 毛宁, 杨妍, 等. 宁夏庆华煤镜质组和惰质组显微组分的分子结构及对比分析[J]. 化工进展, 2020, 39(S2): 142-151. |
Wang Q, Mao N, Yang Y, et al. Molecular structures and comparative analysis of macerals of vitrinite and inertinite for Qinghua coal, Ningxia[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 142-151. | |
32 | Zhang J P, Wang Y M, Feng W, et al. Insights into the molecular structure of Yangchangwan subbituminous coal based on the combination of experimental and multi-scale computational descriptions[J]. Solid Fuel Chemistry, 2022, 56(1): 67-77. |
33 | Li Z M, Zhu Y, Li N, et al. Revealing reactive mechanism and nitrogen transformation of HSW coal combustions at molecule and particle scales[J]. Powder Technology, 2023, 419: 118368. |
34 | Wang B W, Cao Y M, Li J, et al. Migration and redistribution of sulfur species during chemical looping combustion of coal with CuFe2O4 combined oxygen carrier [J]. Energy & Fuels, 2016, 30(10): 8499-8510. |
35 | Hong D K, Liu L, Wang C B, et al. Construction of a coal char model and its combustion and gasification characteristics: molecular dynamic simulations based on ReaxFF[J]. Fuel, 2021, 300: 120972. |
36 | 王旭锋, 刘晶, 刘丰, 等. 基于CoFe2O4载氧体的生物质化学链气化反应特性[J]. 化工学报, 2019, 70(4): 1583-1590. |
Wang X F, Liu J, Liu F, et al. Characteristics of biomass chemical looping gasification with CoFe2O4 as oxygen carrier[J]. CIESC Journal, 2019, 70(4): 1583-1590. | |
37 | Mao N, Bai H C, Geng C, et al. Insights into the micro-structures and reactive behaviors of coal vitrinite and inertinite macerals with CuFe2O4 in chemical looping combustion[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102164. |
38 | Russo M F, van Duin A C T. Atomistic-scale simulations of chemical reactions: bridging from quantum chemistry to engineering[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2011, 269(14): 1549-1554. |
39 | Shin Y K, Kwak H, Zou C Y, et al. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation[J]. The Journal of Physical Chemistry A, 2012, 116(49): 12163-12174. |
40 | Sorensen M R, Voter A F. Temperature-accelerated dynamics for simulation of infrequent events[J]. The Journal of Chemical Physics, 2000, 112(21): 9599-9606. |
41 | Senftle T P, Hong S, Islam M M, et al. The ReaxFF reactive force-field: development, applications and future directions[J]. NPJ Computational Materials, 2016, 2: 15011. |
42 | 袁妮妮, 郭拓, 白红存, 等. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
Yuan N N, Guo T, Bai H C, et al. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation[J]. CIESC Journal, 2022, 73(9): 4054-4061. | |
43 | Burger C M, Zhu W B, Ma G M, et al. Experimental and computational investigations of ethane and ethylene kinetics with copper oxide particles for chemical looping combustion[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5249-5257. |
44 | Zhan J H, Wu R C, Liu X X, et al. Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation[J]. Fuel, 2014, 134: 283-292. |
45 | Lian L L, Qin Z H, Li C S, et al. Molecular model construction of the dense medium component scaffold in coal for molecular aggregate simulation[J]. ACS Omega, 2020, 5(22): 13375-13383. |
46 | 张帅, 肖睿. 煤的结构对化学链燃烧系统反应性能的影响[J]. 中国电机工程学报, 2019, 39(18): 5449-5456. |
Zhang S, Xiao R. Effect of coal structure on the reaction performance of coal-fueled chemical looping combustion system[J]. Proceedings of the CSEE, 2019, 39(18): 5449-5456. | |
47 | Zhong Q F, Mao Q Y, Xiao J, et al. Sulfur removal from petroleum coke during high-temperature pyrolysis. Analysis from TG-MS data and ReaxFF simulations[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 134-142. |
48 | Zheng M, Li X X, Liu J A, et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy & Fuels, 2013, 27(6): 2942-2951. |
49 | Chang H Z, Deng H X, Yang Q, et al. Investigation of the interaction between vitrinite and inertinite of Xinjiang Wucaiwan coal in pyrolysis by ReaxFF molecular dynamics simulation[J]. Fuel Communications, 2019, 1: 100001. |
50 | Retcofsky H L. Magnetic resonance: introduction, advanced topics and applications to fossil energy[J]. Fuel, 1985, 64(9): 1334. |
51 | Zheng M, Pan Y, Wang Z, et al. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments[J]. Fuel, 2020, 268: 117290. |
52 | 高正平, 沈来宏, 肖军. 基于NiO载氧体的煤化学链燃烧实验[J]. 化工学报, 2008, 59(5): 1242-1250. |
Gao Z P, Shen L H, Xiao J. Chemical looping combustion of coal based on NiO oxygen carrier[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(5): 1242-1250. | |
53 | Siriwardane R, Tian H J, Richards G, et al. Chemical-looping combustion of coal with metal oxide oxygen carriers[J]. Energy & Fuels, 2009, 23(8): 3885-3892. |
54 | Zhong Q F, Zhang Y, Shabnam S, et al. Reductive gaseous (H2/NH3) desulfurization and gasification of high-sulfur petroleum coke via reactive force field molecular dynamics simulations[J]. Energy & Fuels, 2019, 33(9): 8065-8075. |
55 | Zhong Q F, Mao Q Y, Xiao J, et al. ReaxFF simulations of petroleum coke sulfur removal mechanisms during pyrolysis and combustion[J]. Combustion and Flame, 2018, 198: 146-157. |
56 | Zhang J P, Zhang H, Yuan N N, et al. Insights into reactive behaviors and mechanisms of nickel-based oxygen carriers doped by Fe/Co during chemical looping combustion from multiple-scale molecular modeling combined with experiments[J]. Fuel Processing Technology, 2022, 229: 107181. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[3] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[6] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[7] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[8] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[11] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[12] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[13] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[14] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[15] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||