化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2773-2782.DOI: 10.11949/0438-1157.20230209
陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚()
收稿日期:
2023-03-09
修回日期:
2023-07-05
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
张光亚
作者简介:
陈雅鑫(1995—),女,博士研究生,chenyaxin462 @163.com
基金资助:
Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG()
Received:
2023-03-09
Revised:
2023-07-05
Online:
2023-07-05
Published:
2023-08-31
Contact:
Guangya ZHANG
摘要:
近年来,以金属有机框架以及自组装蛋白为代表的新型酶载体材料不断涌现,其中以蛋白质纳米笼为代表的自组装蛋白在酶自固定化领域的独特优势正不断被研究者发掘。蛋白质纳米笼独有的笼状空腔、可基因/化学修饰结构、可控自组装特性等特点为成功获得产量、稳定性和催化活性均提高的自固定化酶奠定了基础。本文首先简要介绍了金属有机框架材料、自组装蛋白,同时结合自身研究经历,重点对蛋白质纳米笼高级结构、人工设计尤其是铁蛋白的结构设计,以及纳米笼的自组装机制进行阐述。最后,综述了蛋白质纳米笼在酶自固定化方面的研究进展,并指出今后可能的研究方向,为建立自固定化新策略提供参考,进而推动自固定化酶从实验室研究迈向工业化应用。
中图分类号:
陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782.
Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages[J]. CIESC Journal, 2023, 74(7): 2773-2782.
蛋白质 | 来源 | 直径/nm | 孔径/Å | 结构细节 | 文献 |
---|---|---|---|---|---|
铁蛋白 | 动物、植物、微生物 | 约12 | 3~5 | 24个亚基自组装成具有F432对称性的十二聚体纳米笼 | [ |
Dps | 微生物 | 约9 | 3~5 | 12个相同的亚基组装成F23对称的笼状结构 | [ |
小热休克蛋白 | 动物、植物、微生物 | 约12 | 10~30 | 24个亚基自组装成一个具有八面体对称性的空心笼 | [ |
封装素 | 微生物 | 约24 约32 | 5~6 | 60个亚基,形成T=1的二十面体纳米笼; 180个亚基,形成T=3的二十面体纳米笼 | [ |
表1 天然蛋白质纳米笼及其结构特征
Table 1 A summary of natural protein nanocages and their structural features
蛋白质 | 来源 | 直径/nm | 孔径/Å | 结构细节 | 文献 |
---|---|---|---|---|---|
铁蛋白 | 动物、植物、微生物 | 约12 | 3~5 | 24个亚基自组装成具有F432对称性的十二聚体纳米笼 | [ |
Dps | 微生物 | 约9 | 3~5 | 12个相同的亚基组装成F23对称的笼状结构 | [ |
小热休克蛋白 | 动物、植物、微生物 | 约12 | 10~30 | 24个亚基自组装成一个具有八面体对称性的空心笼 | [ |
封装素 | 微生物 | 约24 约32 | 5~6 | 60个亚基,形成T=1的二十面体纳米笼; 180个亚基,形成T=3的二十面体纳米笼 | [ |
铁蛋白类型和来源 | 修饰界面 | 设计方法 | 设计结果 | 文献 |
---|---|---|---|---|
重组人H型铁蛋白;基因工程菌株 | C3-C4 | 删除“沉默”氨基酸残基 | 24聚集体转化为48聚集体 | [ |
重组人H型铁蛋白;基因工程菌株 | C3-C4 | 插入“沉默”氨基酸残基 | 24聚集体转化为16聚集体 | [ |
重组铁蛋白突变体 NF-8;基因工程 菌株 | C2、C3、C4、C3-C4 | 删除亚基内二硫键 插入亚基间二硫键 删除亚基内二硫键,并插入亚基间 二硫键 | 8聚集体转化为24聚集体 8聚集体转化为16聚集体 8聚集体转化为48聚集体 | [ |
重组铁蛋白突变体 NF-8;基因工程 菌株 | C2 | 加入Mg2+,使亚基-亚基界面上形成 二硫键 | 8聚集体转化为48聚集体 | [ |
细菌铁蛋白;荚膜红细菌 | C2、C3、C4 | 将氨基酸Glu128和Glu135突变为 谷氨酸或精氨酸 | 形成稳定的二聚体结构 | [ |
重组铁蛋白突变体ΔC*40;基因工程菌株 | C2 | 加入 Cu2+ | 可形成金属响应型的自组装笼蛋白 | [ |
重组马L链脱铁蛋白;基因工程 菌株 | C3-C4 | 删除亚基N端的4~8个残基 | 在pH低于2时仅形成二聚体 | [ |
人H型铁蛋白;基因工程菌株 | C2、C3、C4 | 针对四重轴、三重轴、两重轴的 周围残基进行突变 | 从单体(二聚体)到所有低聚物的 组装中间体 | [ |
重组人H型铁蛋白;基因工程菌株 | C3-C4 | 删除亚基中的DE转角结构和E螺旋 | 弱化界面间的相互作用,使之在温和条件下可自组装 | [ |
重组人H型铁蛋白;基因工程菌株 | C4 | 设计亚基内的AB环 | 可以在温和条件下自组装(即pH 3.0或4.0下解聚,pH 7.0下重新组装) | [ |
重组人H型铁蛋白,重组虾(日本 囊对虾)铁蛋白;基因工程菌株 | C4 | 将亚基的DE环上的六个氨基酸残基 突变为插入HHHHHH(His 6) | 4聚体可以在温和条件下响应金属 离子或pH可逆地自组装成纳米笼 | [ |
幽门螺旋杆菌铁蛋白;幽门螺旋 杆菌 | C2、C3、C4、C3-C4 | 在蛋白表面暴露的柔性环中插入His 标签 | 24聚体可以基于金属螯合物被快速 纯化 | [ |
人H型铁蛋白;基因工程菌株 | C4 | 删除亚基C端的E螺旋结构,扩大 四重轴通道 | 形成E螺旋-截断铁蛋白,提高装载 效率,可pH响应性释放货物蛋白 | [ |
表2 关于天然铁蛋白结构的界面修饰
Table 2 The interfacial modification of natural ferritin structure
铁蛋白类型和来源 | 修饰界面 | 设计方法 | 设计结果 | 文献 |
---|---|---|---|---|
重组人H型铁蛋白;基因工程菌株 | C3-C4 | 删除“沉默”氨基酸残基 | 24聚集体转化为48聚集体 | [ |
重组人H型铁蛋白;基因工程菌株 | C3-C4 | 插入“沉默”氨基酸残基 | 24聚集体转化为16聚集体 | [ |
重组铁蛋白突变体 NF-8;基因工程 菌株 | C2、C3、C4、C3-C4 | 删除亚基内二硫键 插入亚基间二硫键 删除亚基内二硫键,并插入亚基间 二硫键 | 8聚集体转化为24聚集体 8聚集体转化为16聚集体 8聚集体转化为48聚集体 | [ |
重组铁蛋白突变体 NF-8;基因工程 菌株 | C2 | 加入Mg2+,使亚基-亚基界面上形成 二硫键 | 8聚集体转化为48聚集体 | [ |
细菌铁蛋白;荚膜红细菌 | C2、C3、C4 | 将氨基酸Glu128和Glu135突变为 谷氨酸或精氨酸 | 形成稳定的二聚体结构 | [ |
重组铁蛋白突变体ΔC*40;基因工程菌株 | C2 | 加入 Cu2+ | 可形成金属响应型的自组装笼蛋白 | [ |
重组马L链脱铁蛋白;基因工程 菌株 | C3-C4 | 删除亚基N端的4~8个残基 | 在pH低于2时仅形成二聚体 | [ |
人H型铁蛋白;基因工程菌株 | C2、C3、C4 | 针对四重轴、三重轴、两重轴的 周围残基进行突变 | 从单体(二聚体)到所有低聚物的 组装中间体 | [ |
重组人H型铁蛋白;基因工程菌株 | C3-C4 | 删除亚基中的DE转角结构和E螺旋 | 弱化界面间的相互作用,使之在温和条件下可自组装 | [ |
重组人H型铁蛋白;基因工程菌株 | C4 | 设计亚基内的AB环 | 可以在温和条件下自组装(即pH 3.0或4.0下解聚,pH 7.0下重新组装) | [ |
重组人H型铁蛋白,重组虾(日本 囊对虾)铁蛋白;基因工程菌株 | C4 | 将亚基的DE环上的六个氨基酸残基 突变为插入HHHHHH(His 6) | 4聚体可以在温和条件下响应金属 离子或pH可逆地自组装成纳米笼 | [ |
幽门螺旋杆菌铁蛋白;幽门螺旋 杆菌 | C2、C3、C4、C3-C4 | 在蛋白表面暴露的柔性环中插入His 标签 | 24聚体可以基于金属螯合物被快速 纯化 | [ |
人H型铁蛋白;基因工程菌株 | C4 | 删除亚基C端的E螺旋结构,扩大 四重轴通道 | 形成E螺旋-截断铁蛋白,提高装载 效率,可pH响应性释放货物蛋白 | [ |
1 | 林源清, 李夏兰, 张光亚. 酶自固定化方法研究进展[J]. 化工进展, 2018, 37(12): 4523-4532. |
Lin Y Q, Li X L, Zhang G Y. Recent research progress of enzyme self-immobilization methods[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4523-4532. | |
2 | Roy J J, Abraham T E, Abhijith K S, et al. Biosensor for the determination of phenols based on cross-linked enzyme crystals (CLEC) of laccase[J]. Biosensors and Bioelectronics, 2005, 21(1): 206-211. |
3 | Gupta M N, Raghava S. Enzyme stabilization via cross-linked enzyme aggregates[M]//Enzyme Stabilization and Immobilization. Totowa, NJ: Humana Press, 2010: 133-145. |
4 | Liu D M, Chen J, Shi Y P. Advances on methods and easy separated support materials for enzymes immobilization[J]. TrAC Trends in Analytical Chemistry, 2018, 102: 332-342. |
5 | Spahn C, Minteer S. Enzyme immobilization in biotechnology[J]. Recent Patents on Engineering, 2008, 2(3): 195-200. |
6 | 吴兆明, 杨敏, 孙颖, 等. 酶固定化载体材料的研究进展[J]. 食品安全质量检测学报, 2018, 9(5): 1031-1037. |
Wu Z M, Yang M, Sun Y, et al. Research progress of immobilized enzyme carrier materials[J]. Journal of Food Safety & Quality, 2018, 9(5): 1031-1037. | |
7 | Viswanath S, Wang J, Bachas L G, et al. Site-directed and random immobilization of subtilisin on functionalized membranes: activity determination in aqueous and organic media[J]. Biotechnology and Bioengineering, 1998, 60(5): 608-616. |
8 | Schmid E L, Keller T A, Dienes Z, et al. Reversible oriented surface immobilization of functional proteins on oxide surfaces[J]. Analytical Chemistry, 1997, 69(11): 1979-1985. |
9 | 曹黎明, 陈欢林. 酶的定向固定化方法及其对酶生物活性的影响[J]. 中国生物工程杂志, 2003, 23(1): 22-29. |
Cao L M, Chen H L. The methods of oriented immobilized enzymes and the activities of enzymes affected by oriented immobilizatiom[J]. Progress in Biotechnology, 2003, 23(1): 22-29. | |
10 | 夏欢, 卢滇楠, 戈钧, 等. 纳米结构酶催化剂研究进展[J]. 化工学报, 2021, 72(12): 6086-6092. |
Xia H, Lu D N, Ge J, et al. Advances in nanostructured enzyme catalysts[J]. CIESC Journal, 2021, 72(12): 6086-6092. | |
11 | Webber M J, Newcomb C J, Bitton R, et al. Switching of self-assembly in a peptide nanostructure with a specific enzyme[J]. Soft Matter, 2011, 7(20): 9665-9672. |
12 | 冯小倩, 徐晴, 张立慧, 等. 金属有机框架材料固定化酶的研究进展[J]. 生物加工过程, 2022, 20(5): 490-499. |
Feng X Q, Xu Q, Zhang L H, et al. Progress in enzyme immobilization with metal-organic frameworks[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(5): 490-499. | |
13 | Hu Y L, Dai L M, Liu D H, et al. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 793-801. |
14 | Wu X L, Hou M, Ge J. Metal-organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization[J]. Catalysis Science & Technology, 2015, 5(12): 5077-5085. |
15 | 毛梦雷, 孟令玎, 高蕊, 等. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
Mao M L, Meng L D, Gao R, et al. Research progress on enzyme immobilization on porous framework materials[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. | |
16 | Liang W B, Wied P, Carraro F, et al. Metal-organic framework-based enzyme biocomposites[J]. Chemical Reviews, 2021, 121(3): 1077-1129. |
17 | Fernández-Fernández M, Sanromán M Á, Moldes D. Recent developments and applications of immobilized laccase[J]. Biotechnology Advances, 2013, 31(8): 1808-1825. |
18 | Zhao Z X, Qiao M Q, Yin F, et al. Amperometric glucose biosensor based on self-assembly hydrophobin with high efficiency of enzyme utilization[J]. Biosensors and Bioelectronics, 2007, 22(12): 3021-3027. |
19 | Piscitelli A, Pennacchio A, Longobardi S, et al. Vmh2 hydrophobin as a tool for the development of “self-immobilizing” enzymes for biosensing[J]. Biotechnology and Bioengineering, 2017, 114(1): 46-52. |
20 | Zhao Z, Fu J L, Dhakal S, et al. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion[J]. Nature Communications, 2016, 7: 10619. |
21 | Caparco A A, Dautel D R, Champion J A. Protein mediated enzyme immobilization[J]. Small, 2022, 18(19): 2106425. |
22 | Montemiglio L C, Testi C, Ceci P, et al. Cryo-EM structure of the human ferritin-transferrin receptor 1 complex[J]. Nature Communications, 2019, 10: 1121. |
23 | Boyton I, Goodchild S C, Diaz D, et al. Characterizing the dynamic disassembly/reassembly mechanisms of encapsulin protein nanocages[J]. ACS Omega, 2021, 7(1): 823-836. |
24 | 张婷婷. 基于铁蛋白的纳米结构可控自组装与功能化[D]. 开封: 河南大学, 2016. |
Zhang T T. Controllable self-assembly and functionalization of ferritin based nanostructure[D]. Kaifeng: Henan University, 2016. | |
25 | Lawson D M, Artymiuk P J, Yewdall S J, et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts[J]. Nature, 1991, 349(6309): 541-544. |
26 | Chen H, Tan X Y, Fu Y, et al. The development of natural and designed protein nanocages for encapsulation and delivery of active compounds[J]. Food Hydrocolloids, 2021, 121: 107004. |
27 | Bradley J M, Gray E, Richardson J, et al. Protein encapsulation within the internal cavity of a bacterioferritin[J]. Nanoscale, 2022, 14(34): 12322-12331. |
28 | Tetter S, Hilvert D. Enzyme encapsulation by a ferritin cage[J]. Angewandte Chemie International Edition, 2017, 56(47): 14933-14936. |
29 | Guo M L, Gao M M, Liu J J, et al. Bacterioferritin nanocage: structure, biological function, catalytic mechanism, self-assembly and potential applications[J]. Biotechnology Advances, 2022, 61: 108057. |
30 | Tasneem N, Szyszka T N, Jenner E N, et al. How pore architecture regulates the function of nanoscale protein compartments[J]. ACS Nano, 2022, 16(6): 8540-8556. |
31 | 季鹏, 王思琦, 陈苡蔚, 等. 铁蛋白纳米笼的研究进展[J]. 中国新药杂志, 2020, 29(2): 170-175. |
Ji P, Wang S Q, Chen Y W, et al. Research progress of ferritin nanocage[J]. Chinese Journal of New Drugs, 2020, 29(2): 170-175. | |
32 | 刘欣. 基于类弹性蛋白多肽(ELPs)仿生硅化制备包硅磁性微球及其用于酶自固定化[D]. 泉州: 华侨大学, 2021. |
Liu X. Preparation of silicon-coated magnetic microspheres based on biomimetic siliconization of elastin-like polypeptides (ELPs) and used in enzyme self-immobilization[D]. Quanzhou: Huaqiao University, 2021. | |
33 | Yuan H, Liu G Z, Chen Y X, et al. A versatile tag for simple preparation of cutinase towards enhanced biodegradation of polyethylene terephthalate[J]. International Journal of Biological Macromolecules, 2023, 225: 149-161. |
34 | Ilari A, Savino C, Stefanini S, et al. Crystallization and preliminary X-ray crystallographic analysis of the unusual ferritin from Listeria innocua [J]. Acta Crystallographica Section D Biological Crystallography, 1999, 55(2): 552-553. |
35 | Kim K K, Kim R, Kim S H. Crystal structure of a small heat-shock protein[J]. Nature, 1998, 394(6693): 595-599. |
36 | Sutter M, Boehringer D, Gutmann S, et al. Structural basis of enzyme encapsulation into a bacterial nanocompartment[J]. Nature Structural & Molecular Biology, 2008, 15(9): 939-947. |
37 | Akita F, Chong K T, Tanaka H, et al. The crystal structure of a virus-like particle from the hyperthermophilic archaeon Pyrococcus furiosus provides insight into the evolution of viruses[J]. Journal of Molecular Biology, 2007, 368(5): 1469-1483. |
38 | Palombarini F, Di Fabio E, Boffi A, et al. Ferritin nanocages for protein delivery to tumor cells[J]. Molecules, 2020, 25(4): 825. |
39 | Zhang S L, Zang J C, Wang W M, et al. Conversion of the native 24-mer ferritin nanocage into its non-native 16-mer analogue by insertion of extra amino acid residues[J]. Angewandte Chemie International Edition, 2016, 55(52): 16064-16070. |
40 | Zhang S L, Zang J C, Zhang X R, et al. “Silent” amino acid residues at key subunit interfaces regulate the geometry of protein nanocages[J]. ACS Nano, 2016, 10(11): 10382-10388. |
41 | Zang J C, Chen H, Zhang X R, et al. Disulfide-mediated conversion of 8-mer bowl-like protein architecture into three different nanocages[J]. Nature Communications, 2019, 10: 778. |
42 | Kilic M A, Spiro S, Moore G R. Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein[J]. Protein Science, 2003, 12(8): 1663-1674. |
43 | Zhang Y, Raudah S, Teo H, et al. Alanine-shaving mutagenesis to determine key interfacial residues governing the assembly of a nano-cage maxi-ferritin[J]. Journal of Biological Chemistry, 2010, 285(16): 12078-12086. |
44 | Huard D J E, Kane K M, Tezcan F A. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly[J]. Nature Chemical Biology, 2013, 9(3): 169-176. |
45 | Yoshizawa K, Mishima Y, Park S Y, et al. Effect of N-terminal residues on the structural stability of recombinant horse L-chain apoferritin in an acidic environment[J]. Journal of Biochemistry, 2007, 142(6): 707-713. |
46 | Santambrogio P, Pinto P, Levi S, et al. Effects of modifications near the 2-, 3- and 4-fold symmetry axes on human ferritin renaturation[J]. The Biochemical Journal, 1997, 322(2): 461-468. |
47 | Chen H, Zhang S, Xu C, et al. Engineering protein interfaces yields ferritin disassembly and reassembly under benign experimental conditions[J]. Chemical Communications, 2016, 52(46): 7402-7405. |
48 | Wang W M, Wang L L, Li G B, et al. AB loop engineered ferritin nanocages for drug loading under benign experimental conditions[J]. Chemical Communications, 2019, 55(82): 12344-12347. |
49 | Gu C K, Zhang T, Lv C Y, et al. His-mediated reversible self-assembly of ferritin nanocages through two different switches for encapsulation of cargo molecules[J]. ACS Nano, 2020,14(12): 17080-17090. |
50 | Weidenbacher P, Musunuri S, Powell A E, et al. Simplified purification of glycoprotein-modified ferritin nanoparticles for vaccine development[J]. Biochemistry, 2023, 62(2): 292-299. |
51 | Qu Y R, Davey K, Sun Y, et al. Engineered design of the E-helix structure on ferritin nanoparticles[J]. ACS Applied Bio Materials, 2022, 5(7): 3167-3179. |
52 | Ahn B, Lee S G, Yoon H R, et al. Four-fold channel-nicked human ferritin nanocages for active drug loading and pH-responsive drug release[J]. Angewandte Chemie International Edition, 2018, 57(11): 2909-2913. |
53 | Manickavasagam P, Abhishek S, Rajakumara E. Designing ferritin nanocage based vaccine candidates for SARS-CoV-2 by in silico engineering of its HLA I and HLA Ⅱ epitope peptides[J]. Journal of Biomolecular Structure and Dynamics, 2022, 41(13): 6121-6133. |
54 | Ardejani M S, Chok X L, Foo C J, et al. Complete shift of ferritin oligomerization toward nanocage assembly via engineered protein-protein interactions[J]. Chemical Communications, 2013, 49(34): 3528-3530. |
55 | King N P, Sheffler W, Sawaya M R, et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy[J]. Science, 2012, 336(6085): 1171-1174. |
56 | Hsia Y, Bale J B, Gonen S, et al. Design of a hyperstable 60-subunit protein icosahedron[J]. Nature, 2016, 535(7610): 136-139. |
57 | Mohanty A, Mithra K, Jena S S, et al. Kinetics of ferritin self-assembly by laser light scattering: impact of subunit concentration, pH, and ionic strength[J]. Biomacromolecules, 2021, 22(4): 1389-1398. |
58 | Kim M, Rho Y, Jin K S, et al. pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly[J]. Biomacromolecules, 2011, 12(5): 1629-1640. |
59 | Künzle M, Mangler J, Lach M, et al. Peptide-directed encapsulation of inorganic nanoparticles into protein containers[J]. Nanoscale, 2018, 10(48): 22917-22926. |
60 | Rodrigues M Q, Alves P M, Roldão A. Functionalizing ferritin nanoparticles for vaccine development[J]. Pharmaceutics, 2021, 13(10): 1621. |
61 | Edwardson T G W, Levasseur M D, Tetter S, et al. Protein cages: from fundamentals to advanced applications[J]. Chemical Reviews, 2022, 122(9): 9145-9197. |
62 | Erbilgin O, Sutter M, Kerfeld C A. The structural basis of coenzyme A recycling in a bacterial organelle[J]. PLoS Biology, 2016, 14(3): e1002399. |
63 | Chen Q M, Men D, Sun T Y, et al. Supreme catalytic properties of enzyme nanoparticles based on ferritin self-assembly[J]. ACS Applied Bio Materials, 2020, 3(10): 7158-7167. |
64 | Giessen T W, Silver P A. A catalytic nanoreactor based on in vivo encapsulation of multiple enzymes in an engineered protein nanocompartment[J]. ChemBioChem, 2016, 17(20): 1931-1935. |
65 | Herbert F C, Brohlin O R, Galbraith T, et al. Supramolecular encapsulation of small-ultrared fluorescent proteins in virus-like nanoparticles for noninvasive in vivo imaging agents[J]. Bioconjugate Chemistry, 2020, 31(5): 1529-1536. |
66 | 秦钰. 蛋白质衣壳对货源酶性质的影响[D]. 天津: 天津大学, 2019. |
Qin Y. The influence of protein capsids on the properties of the cargo enzyme[D]. Tianjin: Tianjin University, 2019. | |
67 | Seebeck F P, Woycechowsky K J, Zhuang W, et al. A simple tagging system for protein encapsulation[J]. Journal of the American Chemical Society, 2006, 128(14): 4516-4517. |
68 | Zschoche R, Hilvert D. Diffusion-limited cargo loading of an engineered protein container[J]. Journal of the American Chemical Society, 2015, 137(51): 16121-16132. |
69 | Ferlez B, Sutter M, Kerfeld C A. A designed bacterial microcompartment shell with tunable composition and precision cargo loading[J]. Metabolic Engineering, 2019, 54: 286-291. |
70 | Deshpande S, Masurkar N D, Girish V M, et al. Thermostable exoshells fold and stabilize recombinant proteins[J]. Nature Communications, 2017, 8: 1442. |
71 | Liu G Z, Yuan H, Li X B, et al. Tailoring the properties of self-assembled carbonic anhydrase supraparticles for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(37): 12374-12385. |
72 | Ge Z Q, Liu G Z, Zeng B, et al. Tailor-made active enzyme aggregates in vivo for efficient degradation of biomass polysaccharide into reducing sugar[J]. Biomass Conversion and Biorefinery, 2022, DOI: 10.1007/s13399-022-03578-8 . |
73 | 黄雄亮. 多结构域木聚糖酶XynA的优化表达及其酶学性质鉴定[D]. 广州: 华南理工大学, 2015. |
Huang X L. Improvement expression and characterization of multi-domain xylanase XynA[D]. Guangzhou: South China University of Technology, 2015. | |
74 | 葛慧华, 葛钟琪, 毛磊, 等. 铁蛋白介导的地衣多糖酶胞内自发聚集及其高效制备[J]. 生物工程学报, 2022, 38(4): 1602-1611. |
Ge H H, Ge Z Q, Mao L, et al. In vivo self-aggregation and efficient preparation of recombinant lichenase based on ferritin[J]. Chinese Journal of Biotechnology, 2022, 38(4): 1602-1611. | |
75 | Lee E J, Lee N K, Kim I S. Bioengineered protein-based nanocage for drug delivery[J]. Advanced Drug Delivery Reviews, 2016, 106: 157-171. |
76 | Truffi M, Fiandra L, Sorrentino L, et al. Ferritin nanocages: a biological platform for drug delivery, imaging and theranostics in cancer[J]. Pharmacological Research, 2016, 107: 57-65. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[3] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[4] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[5] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[6] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[7] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[8] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[9] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[10] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[11] | 胡阳, 孙彦. 酶分子的自驱动及其介导的微纳马达[J]. 化工学报, 2023, 74(1): 116-132. |
[12] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[13] | 安绍杰, 许洪峰, 李思, 许远航, 李佳锡. 利用分子机器的组装与分解构建pH敏感性谷胱甘肽过氧化物人工酶[J]. 化工学报, 2022, 73(8): 3669-3678. |
[14] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[15] | 张昕哲, 孙文涛, 吕波, 李春. 植物天然产物氧化与微生物制造[J]. 化工学报, 2022, 73(7): 2790-2805. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||