化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2880-2888.DOI: 10.11949/0438-1157.20230076

• 流体力学与传递现象 • 上一篇    下一篇

朝下多尺度沟槽翅片结构表面沸腾换热实验研究

史昊鹏1,2(), 钟达文1(), 廉学新1, 张君峰1   

  1. 1.华北电力大学北京市非能动核能安全技术重点实验室,北京 102206
    2.上海交通大学核科学与工程学院,上海 200240
  • 收稿日期:2023-02-03 修回日期:2023-06-29 出版日期:2023-07-05 发布日期:2023-08-31
  • 通讯作者: 钟达文
  • 作者简介:史昊鹏(1997—),男,硕士研究生,1326808950@qq.com
  • 基金资助:
    国家自然科学基金项目(51706068);北京市自然科学基金项目(3192035);中央高校基本科研业务费专项资金项目(2020MS034)

Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures

Haopeng SHI1,2(), Dawen ZHONG1(), Xuexin LIAN1, Junfeng ZHANG1   

  1. 1.Beijing Key Laboratory of Passive Nuclear Power Safety and Technology, North China Electric Power University, Beijing 102206, China
    2.School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2023-02-03 Revised:2023-06-29 Online:2023-07-05 Published:2023-08-31
  • Contact: Dawen ZHONG

摘要:

压力容器外部冷却(ERVC)技术作为实现核反应堆堆内熔融物滞留(IVR)的技术手段,存在实现更高换热速率的需求。采用可旋转朝下平板换热表面模拟ERVC过程中下封头局部位置的沸腾状况,基于冷喷涂(CS)的增材制造(AM)技术在换热表面上制备出具有多尺度的沟槽翅片状强化换热结构。在常压饱和去离子水环境中,开展了临界沸腾换热实验,获得了沸腾曲线,并与裸表面结果进行了性能对比。研究结果表明多尺度结构表面不仅具备传统翅片结构的临界热通量(CHF)强化能力,CHF增幅60%以上,且具有更高的沸腾传热系数,体现了多尺度协同强化换热的正向效应。本结果可为CS-AM技术在强化沸腾换热技术领域,尤其是ERVC领域的应用提供重要依据。

关键词: 相变, 传热, 多尺度, 强化沸腾, 冷喷涂增材制造技术, 临界热通量, 沸腾传热系数

Abstract:

External pressure vessel cooling (ERVC) technology, as a technical means to achieve in-reactor melt retention (IVR) in nuclear reactors, needs to achieve higher heat transfer rates. This study used heated plate surfaces with different downward orientations to simulate the boiling heat transfer during ERVC process on the local area of the outer reactor pressure vessel (RPV) lower head, and the advanced additive manufacturing of cold spraying (CS-AM) was applied to directly fabricate multiscale groove-fin arrays on the heated surfaces. After going through downward-facing critical pool boiling experiments in the environment of atmosphere and saturated water, the boiling curves were obtained and compared with bare surface to evaluate the performance of enhancing boiling heat transfer. The results indicated that the mulitscale structured surfaces not only had excellent critical heat flux (CHF)-enhancing ability with more than 60% CHF increase over the bare surface, but also had better boiling heat transfer coefficient (BHTC) performance. In terms of thermal characteristics, the positive impact of the synergistic effect of multiscale structures on CHF was fully reflected. Significantly, this work provided an important basis for the application of CS-AM technology in the field of ERVC.

Key words: phase change, heat transfer, multiscale, enhanced boiling, cold spraying & additive manufacturing, critical heat flux, boiling heat transfer coefficient

中图分类号: