1 |
Kymäläinen O, Tuomisto H, Theofanous T G. In-vessel retention of corium at the Loviisa plant[J]. Nuclear Engineering and Design, 1997, 169(1/2/3): 109-130.
|
2 |
Zhang Y P, Qiu S Z, Su G H, et al. Analysis of safety margin of in-vessel retention for AP1000[J]. Nuclear Engineering and Design, 2010, 240(8): 2023-2033.
|
3 |
Jeong Y H, Chang S H, Baek W P. Critical heat flux experiments on the reactor vessel wall using 2-D slice test section[J]. Nuclear Technology, 2005, 152(2): 162-169.
|
4 |
胡腾, 常华健, 薛艳芳, 等. CAP1400熔融物堆内滞留试验验证研究[J]. 中国核电, 2018, 11(4): 466-470.
|
|
Hu T, Chang H J, Xue Y F, et al. Experimental studies of the CAP1400 IVR strategy[J]. China Nuclear Power, 2018, 11(4): 466-470.
|
5 |
Xing J, Song D Y, Wu Y X. HPR1000: advanced pressurized water reactor with active and passive safety[J]. Engineering, 2016, 2(1): 79-87.
|
6 |
Lee M H, Heo H, Bang I C. Effect of the heat transfer liquid fin on critical heat flux enhancement under ERVC condition[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119304.
|
7 |
Zhong D W, Sun J, Meng J A, et al. Effect of grooves on nucleate boiling heat transfer from downward facing hemispherical surface[J]. Experimental and Computational Multiphase Flow, 2020, 2(1): 52-58.
|
8 |
Zhong D W, Sun J, Meng J A, et al. Experimental study of downward facing boiling on a structured hemispherical surface[J]. Applied Thermal Engineering, 2018, 134: 594-602.
|
9 |
Zhang C, Zhang L, Xu H, et al. Performance of pool boiling with 3D grid structure manufactured by selective laser melting technique[J]. International Journal of Heat and Mass Transfer, 2019, 128: 570-580.
|
10 |
Bian H Z, Kurwitz C, Sun Z N, et al. Enhanced nucleate boiling on 3D-printed micro-porous structured surface[J]. Applied Thermal Engineering, 2018, 141: 422-434.
|
11 |
Sohag F A, Beck F R, Mohanta L, et al. Enhancement of downward-facing saturated boiling heat transfer by the cold spray technique[J]. Nuclear Engineering and Technology, 2017, 49(1): 113-122.
|
12 |
Sohag F A, Beck F R, Mohanta L, et al. Effects of subcooling on downward facing boiling heat transfer with micro-porous coating formed by cold spray technique[J]. International Journal of Heat and Mass Transfer, 2017, 106: 767-780.
|
13 |
Li S P, Luo X T, Li C J. Cold sprayed superhydrophilic porous metallic coating for enhancing the critical heat flux of the pressurized water-cooled reactor vessel in nuclear power plants[J]. Surface and Coatings Technology, 2021, 422: 127519.
|
14 |
夏沐清. 澳大利亚军队证明3D打印可增强自主能力[J]. 兵器材料科学与工程, 2021, 44(2): 70.
|
|
Xia M Q. The Australian army has proved that 3D printing can enhance autonomy[J]. Ordnance Material Science and Engineering, 2021, 44(2): 70.
|
15 |
何蕾. 世界上最大的金属3D打印机正式面世[J]. 钛工业进展, 2018, 35(3): 48.
|
|
He L. The world's largest metal 3D printer officially appeared[J]. Titanium Industry Progress, 2018, 35(3): 48.
|
16 |
史昊鹏, 廖炜铖, 钟达文, 等. 朝下针翅结构表面稳态临界沸腾换热实验研究[J]. 原子能科学技术, 2020, 54(12): 2337-2343.
|
|
Shi H P, Liao W C, Zhong D W, et al. Steady-state experimental study of critical boiling heat transfer on downward facing surface with pin-fin coating structure[J]. Atomic Energy Science and Technology, 2020, 54(12): 2337-2343.
|
17 |
Shi H P, Li S P, Zhong D W, et al. CHF enhancement of downward-facing saturated pool boiling on the SCGS-modified surfaces with multi-scale conical pin fin structures[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121848.
|
18 |
Zhang W, Chai Y Z, Xu J L, et al. 3D heterogeneous wetting microchannel surfaces for boiling heat transfer enhancement[J]. Applied Surface Science, 2018, 457: 891-901.
|
19 |
许中明, 杨亘, 王鸿博. 冷喷涂沉积金属3D打印喷涂参数对表面质量影响研究[J]. 顺德职业技术学院学报, 2021, 19(3): 6-9.
|
|
Xu Z M, Yang G, Wang H B. Study of the influence of spraying parameters on the surface quality of 3D metal printing of cold spray deposition[J]. Journal of Shunde Polytechnic, 2021, 19(3): 6-9.
|
20 |
Kim D Y, Park J J, Lee J G, et al. Cold spray deposition of copper electrodes on silicon and glass substrates[J]. Journal of Thermal Spray Technology, 2013, 22(7): 1092-1102.
|
21 |
Ishigai S, Inoue K, Kiwaki Z, et al. Boiling heat transfer from a flat surface facing downward[C]// Proceedings of the International Heat Transfer Conference. 1961: 224-229.
|
22 |
Githinji P M, SaberskY R H. Some effects of the orientation of the heating surface in nucleate boiling[J]. Journal of Heat Transfer, 1963, 85(4): 379.
|
23 |
Zhong D W, Meng J A, Li Z X, et al. Critical heat flux for downward-facing saturated pool boiling on pin fin surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 87: 201-211.
|
24 |
钟达文, 孟继安, 李志信. 朝下沟槽结构表面池沸腾换热[J]. 化工学报, 2016, 67(9): 3559-3565.
|
|
Zhong D W, Meng J A, Li Z X. Saturated pool boiling from downward facing structured surfaces with grooves[J]. CIESC Journal, 2016, 67(9): 3559-3565.
|
25 |
Xie S Z, Jiang M N, Kong H J, et al. An experimental investigation on the pool boiling of multi-orientated hierarchical structured surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120595.
|
26 |
Liao L, Bao R, Liu Z H. Compositive effects of orientation and contact angle on critical heat flux in pool boiling of water[J]. Heat and Mass Transfer, 2008, 44(12): 1447-1453.
|
27 |
Zhang J F, Zhong D W, Shi H P, et al. Machine learning prediction of critical heat flux on downward facing surfaces[J]. International Journal of Heat and Mass Transfer, 2022, 191: 122857.
|