化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3710-3721.DOI: 10.11949/0438-1157.20200279
董缇1(),彭鹏1,王亦伟1,曹文炅1,郑耀东2,雷博3,蒋方明1(
)
收稿日期:
2020-03-18
修回日期:
2020-05-07
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
蒋方明
作者简介:
董缇(1989—),男,博士,助理研究员,基金资助:
Ti DONG1(),Peng PENG1,Yiwei WANG1,Wenjiong CAO1,Yaodong ZHENG2,Bo LEI3,Fangming JIANG1(
)
Received:
2020-03-18
Revised:
2020-05-07
Online:
2020-08-05
Published:
2020-08-05
Contact:
Fangming JIANG
摘要:
随着锂离子电池的广泛应用,电池以更大功率、更高倍率运行的需求日益迫切,探索锂离子电池大电流运行时的电-热行为及内部关键参数演化十分必要。建立了锂离子电池的电化学-热(ECT)模型和电池材料的热滥用模型,模拟了方形单层LiCoO2/C电芯在不同放电电流下的电-热行为,对比分析了电池分别以1C和14C倍率放电时电池内部关键电化学参数的演化过程。结果表明:随着放电电流增加,电池内部积聚的热量会引发材料的放热反应,有引发电池热失控的可能性;大电流放电过程电解液中锂离子浓度、输运电流密度、过电势、电解质电势和固相颗粒表面的锂离子浓度波动较大,在电池内部相关区域形成了明显的浓度差、密度差和电势差。
中图分类号:
董缇, 彭鹏, 王亦伟, 曹文炅, 郑耀东, 雷博, 蒋方明. 锂离子电池大电流放电过程模拟研究[J]. 化工学报, 2020, 71(8): 3710-3721.
Ti DONG, Peng PENG, Yiwei WANG, Wenjiong CAO, Yaodong ZHENG, Bo LEI, Fangming JIANG. Simulation on lithium ion battery discharge process with large current[J]. CIESC Journal, 2020, 71(8): 3710-3721.
参数 | 正极集流体 | 负电极 | 隔膜 | 正电极 | 负极集流体 |
---|---|---|---|---|---|
厚度, L /μm | 10 | 60 | 25 | 64 | 20 |
密度, ρ/(kg·m-3) | 8900 | 2660 | 492 | 2500 | 2700 |
比热容, cp/(J·kg-1·K-1) | 385 | 1437.4 | 1978 | 700 | 903 |
热导率[ | 398 | 1.04 | 0.334 | 1.48 | 238 |
离子半径, r /μm | 10 | N/A | 8 | ||
初始SOC | 0.81 | 0.13 | |||
电极比面积, αs /(m2·m-3) | 1.77×105 | 2.40×105 | |||
固相最大锂离子浓度[ | 30555 | 51555 | |||
起始SOCa | 0.806 | 0.51 | |||
起始电解质浓度,ce /(mol·m-3) | 1000 | 1200 | 1000 | ||
交换电流密度参考值/(A·m-2) | 36 | 26 | |||
固相离子电导率, σ/(S·m-1) | 6.0×107 | 2.0 | 0 | 0.1 | 3.8×107 |
固相锂离子扩散系数, Ds /(m2·s-1) | 0 | 式(15) | 0 | 1×10-13 | 0 |
电解质相锂离子扩散系数, De/(m2·s-1) | 式(17) | ||||
活化能 Eact_Ds(锂离子扩散)/(J·mol-1) | 4000 | N/A | 20000 | ||
活化能Eact_i0(交换电流密度)/(J·mol-1) | 4000 | N/A | 4000 | ||
Bruggeman 指数 | 1.5 | 1.5 | 1.5 | ||
表观交换系数αa,αc | 0.5 | 0.5 | |||
接触电阻, Rc/ (Ω·m2) | 0.005 | ||||
锂离子转移系数t+0 | 0.363 | ||||
法拉第常数, F/(C·mol-1) | 96487.0 | ||||
参考温度, Tref/K | 298.15 |
表1 电池不同区域的模型参数
Table 1 Model parameters of different regions from battery
参数 | 正极集流体 | 负电极 | 隔膜 | 正电极 | 负极集流体 |
---|---|---|---|---|---|
厚度, L /μm | 10 | 60 | 25 | 64 | 20 |
密度, ρ/(kg·m-3) | 8900 | 2660 | 492 | 2500 | 2700 |
比热容, cp/(J·kg-1·K-1) | 385 | 1437.4 | 1978 | 700 | 903 |
热导率[ | 398 | 1.04 | 0.334 | 1.48 | 238 |
离子半径, r /μm | 10 | N/A | 8 | ||
初始SOC | 0.81 | 0.13 | |||
电极比面积, αs /(m2·m-3) | 1.77×105 | 2.40×105 | |||
固相最大锂离子浓度[ | 30555 | 51555 | |||
起始SOCa | 0.806 | 0.51 | |||
起始电解质浓度,ce /(mol·m-3) | 1000 | 1200 | 1000 | ||
交换电流密度参考值/(A·m-2) | 36 | 26 | |||
固相离子电导率, σ/(S·m-1) | 6.0×107 | 2.0 | 0 | 0.1 | 3.8×107 |
固相锂离子扩散系数, Ds /(m2·s-1) | 0 | 式(15) | 0 | 1×10-13 | 0 |
电解质相锂离子扩散系数, De/(m2·s-1) | 式(17) | ||||
活化能 Eact_Ds(锂离子扩散)/(J·mol-1) | 4000 | N/A | 20000 | ||
活化能Eact_i0(交换电流密度)/(J·mol-1) | 4000 | N/A | 4000 | ||
Bruggeman 指数 | 1.5 | 1.5 | 1.5 | ||
表观交换系数αa,αc | 0.5 | 0.5 | |||
接触电阻, Rc/ (Ω·m2) | 0.005 | ||||
锂离子转移系数t+0 | 0.363 | ||||
法拉第常数, F/(C·mol-1) | 96487.0 | ||||
参考温度, Tref/K | 298.15 |
参数 | 负极 | 隔膜 PP/PE/PP | 正极 | 电解液 LiPF6/EC+DMC+EMC | ||||
---|---|---|---|---|---|---|---|---|
铜箔 | 碳 | 黏结剂等 | 铝箔 | LiCoO2 | 黏结剂等 | |||
ρ /(kg·m-3) | 8900 | 2660 | 1750 | 492 | 1500 | 2500 | 1750 | 1290 |
cp/(J·kg-1·K-1) | 385 | 1437.4 | 1120 | 1978 | 903 | 700 | 1120 | 133.9 |
k/(W·m-1·K-1) | 398 | 1.04 | 0.12 | 0.334 | 238 | 1.48 | 0.12 | 0.45 |
表2 电池物性参数
Table 2 Battery physical parameters
参数 | 负极 | 隔膜 PP/PE/PP | 正极 | 电解液 LiPF6/EC+DMC+EMC | ||||
---|---|---|---|---|---|---|---|---|
铜箔 | 碳 | 黏结剂等 | 铝箔 | LiCoO2 | 黏结剂等 | |||
ρ /(kg·m-3) | 8900 | 2660 | 1750 | 492 | 1500 | 2500 | 1750 | 1290 |
cp/(J·kg-1·K-1) | 385 | 1437.4 | 1120 | 1978 | 903 | 700 | 1120 | 133.9 |
k/(W·m-1·K-1) | 398 | 1.04 | 0.12 | 0.334 | 238 | 1.48 | 0.12 | 0.45 |
模型 | 方程 |
---|---|
控制方程 | |
能量方程 | |
SEI膜分解反应 | |
负电极材料与电解质反应 | |
正电极分解/ 正电极与电解质反应 | |
电解液分解反应 |
表3 锂离子电池热滥用反应模型
Table 3 Thermal abuse model of Li-ion battery
模型 | 方程 |
---|---|
控制方程 | |
能量方程 | |
SEI膜分解反应 | |
负电极材料与电解质反应 | |
正电极分解/ 正电极与电解质反应 | |
电解液分解反应 |
反应热/(J·kg-1) | 频率因子/s-1 | 活化能/(J·mol-1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hsei | Hne | Hpe | Hele | Asei | Ane | Ape | Ae | Ea,sei | Ea,ne | Ea,pe | Ea,e | ||
2.57×105 | 1.714×106 | 7.9×105 | 1.55×105 | 2.25×1015 | 2.5×1013 | 2.55×1014 | 5.14×1025 | 1.3508×105 | 1.3508×105 | 1.5888×105 | 2.74×105 | ||
初始无量纲常数 | 反应级数 | 材料组分/(kg·m-3) | |||||||||||
csei0 | cneg0 | α0 | cele0 | tsei0 | msei | mne,n | mpe,p1 | mpe,p2 | me | Wc | Wp | We | |
0.15 | 0.75 | 0.04 | 1 | 0.033 | 1 | 1 | 1 | 1 | 1 | 1.39×103 | 1.5×103 | 5×102 |
表4 热滥用模型计算参数
Table 4 Calculation parameters used in thermal abuse model
反应热/(J·kg-1) | 频率因子/s-1 | 活化能/(J·mol-1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hsei | Hne | Hpe | Hele | Asei | Ane | Ape | Ae | Ea,sei | Ea,ne | Ea,pe | Ea,e | ||
2.57×105 | 1.714×106 | 7.9×105 | 1.55×105 | 2.25×1015 | 2.5×1013 | 2.55×1014 | 5.14×1025 | 1.3508×105 | 1.3508×105 | 1.5888×105 | 2.74×105 | ||
初始无量纲常数 | 反应级数 | 材料组分/(kg·m-3) | |||||||||||
csei0 | cneg0 | α0 | cele0 | tsei0 | msei | mne,n | mpe,p1 | mpe,p2 | me | Wc | Wp | We | |
0.15 | 0.75 | 0.04 | 1 | 0.033 | 1 | 1 | 1 | 1 | 1 | 1.39×103 | 1.5×103 | 5×102 |
1 | Liu H, Wei Z, He W, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review[J]. Energy Conversion and Management, 2017, 150: 304-330. |
2 | 程广玉, 高蕾, 顾洪汇, 等. 高功率锂离子电池的研制及快充性能[J]. 电池, 2019, 49(2): 94-97. |
Cheng G Y, Gao L, Gu H H, et al. Developing and fast charge performance of high power Li-ion battery [J]. Battery Bimonthly, 2019, 49(2): 94-97. | |
3 | 陈莹. 电动车用锂离子电池快速充电技术研究[D]. 无锡: 江南大学, 2018. |
Chen Y. The study of fast-charging control strategy of lithium-ion battery on electric vehicle[D]. Wuxi: Jiangnan University, 2018. | |
4 | 郭继鹏. 储能锂离子电池恒流与恒功率充放电特性研究[D]. 合肥: 合肥工业大学, 2018. |
Guo J P. Research on the characteristics of energy storage lithium-ion battery with constant current and constant power [D]. Hefei: Hefei University of Technology, 2018. | |
5 | Kim G H, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489. |
6 | Lu L, Han X, Li J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
7 | 董缇, 彭鹏, 曹文炅, 等. 锂离子电池热管理和安全性研究[J]. 新能源进展, 2019, 7(1): 50-59. |
Dong T, Peng P, Cao W J, et al. Research on thermal management and safety of Li-ion batteries [J]. Advances in New and Renewable Energy, 2019, 7(1): 50-59. | |
8 | 邓远富, 曾振欧. 现代电化学[M].广州: 华南理工大学出版社, 2014: 150. |
Deng Y F, Zeng Z O. Modern Electrochemistry [M]. Guangzhou: South China University of Technology Press, 2014: 150 | |
9 | 梁斌, 段天平, 唐盛伟. 化学反应工程[M].北京: 科学出版社, 2010: 5. |
Liang B, Duan T P, Tang S W. Chemical Reaction Engineering[M]. Beijing: Science Press, 2010: 5. | |
10 | Grandjean T, Barai A, Hosseinzadeh E, et al. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management[J]. Journal of Power Sources, 2017, 359: 215-225. |
11 | Khandelwal A, Hariharan K S, Gambhire P, et al. Thermally coupled moving boundary model for charge–discharge of LiFePO4 /C cells[J]. Journal of Power Sources, 2015, 279: 180-196. |
12 | Lai Y, Du S, Ai L, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049. |
13 | Jiang F, Peng P, Sun Y. Thermal analyses of LiFePO4/graphite battery discharge processes[J]. Journal of Power Sources, 2013, 243: 181-194. |
14 | Drake S J, Martin M, Wetz D A, et al. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements[J]. Journal of Power Sources, 2015, 285: 266-273. |
15 | Basu S, Patil R S, Ramachandran S, et al. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes[J]. Journal of Power Sources, 2015, 283: 132-150. |
16 | Doyle M, Newman J, Gozdz A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903. |
17 | Doyle M, Newman J. Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process[J]. Journal of Applied Electrochemistry, 1997, 27(7): 846-856. |
18 | Smith K, Wang C Y. Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles[J]. Journal of Power Sources, 2006, 161(1): 628-639. |
19 | Zhao W, Luo G, Wang C Y. Modeling internal shorting process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2015, 162(7): A1352-A1364. |
20 | Ogihara N, Itou Y, Sasaki T, et al. Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries[J]. Journal of Physical Chemistry C, 2015, 119(9): 4612-4619. |
21 | Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526. |
22 | Gu W, Wang C Y. Thermal-electrochemical modeling of battery systems[J]. Journal of the Electrochemical Society, 2000, 147(8): 2910-2922. |
23 | Fang W, Kwon O J, Wang C Y. Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell[J]. International Journal of Energy Research, 2010, 34(2): 107-115. |
24 | Ramadass P, Haran B, Gomadam P M, et al. Development of first principles capacity fade model for Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(2): A196-A203. |
25 | Guo G, Long B, Cheng B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8): 2393-2398. |
26 | Santhanagopalan S, Ramadass P, Zhang J. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194(1): 550-557. |
27 | Peng P, Jiang F. Thermal behavior analyses of stacked prismatic LiCoO2 lithium-ion batteries during oven tests[J]. International Journal of Heat and Mass Transfer, 2015, 88: 411-423. |
28 | Hatchard T D, Macneil D D, Basu A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7): A755-A761. |
29 | Zhao W, Luo G, Wang C Y. Modeling nail penetration process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 162(1): A207-A217. |
30 | Dong T, Peng P, Jiang F, et al. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat and Mass Transfer, 2018: 261-272. |
31 | 毛亚, 白清友, 马尚德, 等. 循环老化对锂离子电池在绝热条件下的产热及热失控影响[J]. 储能科学与技术, 2018, 7(6): 172-179. |
Mao Y, Bai Q Y, Ma S D, et al. Influence of cycling on the heat-release and thermal runaway of the lithium ion battery under adiabatic condition[J]. Energy Storage Science and Technology, 2018, 7(6): 172-179. | |
32 | Yao K P C, Okasinski J S, Kalaga K, et al. Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using operando energy dispersive X-ray diffraction[J]. Energy & Environmental Science, 2019, 12(2): 656-665. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 287
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 680
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||