化工学报 ›› 2021, Vol. 72 ›› Issue (1): 334-350.DOI: 10.11949/0438-1157.20200920
收稿日期:
2020-07-09
修回日期:
2020-08-14
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
刘公平
作者简介:
黄清波(1996—),男,硕士研究生,基金资助:
HUANG Qingbo(),LIU Gongping(),JIN Wanqin
Received:
2020-07-09
Revised:
2020-08-14
Online:
2021-01-05
Published:
2021-01-05
Contact:
LIU Gongping
摘要:
一/二价离子分离膜在能源存储和转换、污染监测和控制、清洁工业过程等领域发挥重要作用。本文旨在回顾近年来一/二价离子分离膜材料的研究进展,重点综述聚合物膜、混合基质膜及金属有机骨架和二维材料等新型膜用于一/二价离子分离的研究现状,深入讨论界面聚合、层层组装、沉积、共混等不同制备方法对膜微结构和分离性能的影响,探讨一/二价离子分离膜面临的主要挑战和未来研究方向。
中图分类号:
黄清波, 刘公平, 金万勤. 一/二价离子分离膜材料研究进展[J]. 化工学报, 2021, 72(1): 334-350.
HUANG Qingbo, LIU Gongping, JIN Wanqin. Recent progress of membrane materials for mono-/di-valent ions separation[J]. CIESC Journal, 2021, 72(1): 334-350.
1 | Azamat J, Balaei A, Gerami M. A theoretical study of nanostructure membranes for separating Li+ and Mg2+ from Cl-[J]. Computational Materials Science, 2016, 113: 66-74. |
2 | Ge L, Wu B, Yu D, et al. Monovalent cation perm-selective membranes (MCPMs): new developments and perspectives[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1606-1615. |
3 | Nie X Y, Sun S Y, Song X, et al. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis[J]. Journal of Membrane Science, 2017, 530: 185-191. |
4 | 孟庆伟, 张峰, 陈璐, 等. 离子筛吸附与陶瓷膜耦合用于盐湖卤水提锂[J]. 化工学报, 2017, 68(5): 1899-1905. |
Meng Q W, Zhang F, Chen L, et al. Lithium recovery from Qarham brine using adsorption-membrane separation hybrid system[J]. CIESC Journal, 2017, 68(5): 1899-1905. | |
5 | 徐萍, 钱晓明, 郭昌盛, 等. 用于盐湖卤水镁锂分离的纳滤技术研究进展[J]. 材料导报, 2019, 33(2A): 410-417. |
Xu P, Qian X M, Guo C S, et al. Nanofiltration technology used for separation of magnesium and lithium from salt lake brine: a survey[J]. Materials Review, 2019, 33(2A): 410-417. | |
6 | Liu G, Zhao Z, Ghahreman A. Novel approaches for lithium extraction from salt-lake brines: a review[J]. Hydrometallurgy, 2019, 187: 81-100. |
7 | Lin X, Shamsaei E, Kong B, et al. Asymmetrically porous anion exchange membranes with an ultrathin selective layer for rapid acid recovery[J]. Journal of Membrane Science, 2016, 510: 437-446. |
8 | 华伟, 李传润, 张旭, 等. 卷式扩散渗析膜法回收H2SO4/FeSO4体系中的H2SO4[J]. 化工进展, 2012, 31(1): 222-226. |
Hua W, Li C R, Zhang X, et al. Separation of H2SO4/FeSO4 mixture by spiral wound diffusion dialysis[J]. Chemical Industry and Engineering Progress, 2012, 31(1): 222-226. | |
9 | Wang, Q, Wang, Y, Chen, B Z, et al. Designing high-performance nanofiltration membranes for high-salinity separation of sulfate and chloride in the chlor-alkali process[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12280-12290. |
10 | 刘杰, 袁俊生, 纪志永, 等. 纳滤法高浓盐水精制及传质性能[J]. 水处理技术, 2016, 42(4): 17-20. |
Liu J, Yuan J S, Ji Z Y, et al. Study on refining of high salinity solution by nanofiltration and its mass transfer performance[J]. Technology of Water Treatment, 2016, 42(4): 17-20. | |
11 | Kianfar F, Kianfar E. Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(6): 2176-2185. |
12 | Lado J J, Zornitta R L, Vazquez Rodriguez I, et al. Sugarcane biowaste-derived biochars as capacitive deionization electrodes for brackish water desalination and water-softening applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 18992-19004. |
13 | Swain B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(10): 2549-2562. |
14 | Wang S, Li P, Zhang X, et al. Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve[J]. Hydrometallurgy, 2017, 174: 21-28. |
15 | Kim S, Lee J, Kim S, et al. Electrochemical lithium recovery with a LiMn2O4-zinc battery system using zinc as a negative electrode[J]. Energy Technology, 2018, 6(2): 340-344. |
16 | Li X, Mo Y, Qing W, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review[J]. Journal of Membrane Science, 2019, 591: 117317. |
17 | Gin D L, Noble R D. Designing the next generation of chemical separation membranes[J]. Science, 2011, 332(6030): 674-676. |
18 | Liu C, Shi L, Wang R. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42- in feed water[J]. Journal of Membrane Science, 2015, 486: 169-176. |
19 | Sata T, Sata T, Yang W K. Studies on cation-exchange membranes having permselectivity between cations in electrodialysis[J]. Journal of Membrane Science, 2002, 206(1/2): 31-60. |
20 | Liao J, Yu X, Pan N, et al. Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications[J]. Journal of Membrane Science, 2019, 577: 153-164. |
21 | Yuan B, Li P, Wang P, et al. Novel aliphatic polyamide membrane with high mono-/divalent ion selectivity, excellent Ca2+, Mg2+ rejection, and improved antifouling properties[J]. Separation and Purification Technology, 2019, 224: 443-455. |
22 | Cheng J, Shi W, Zhang L, et al. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)[J]. Applied Surface Science, 2017, 416: 152-159. |
23 | Xu P, Wang W, Qian X, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68. |
24 | Ge L, Wu B, Li Q, et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation[J]. Journal of Membrane Science, 2016, 498: 192-200. |
25 | Zhang H, Ding R, Zhang Y, et al. Stably coating loose and electronegative thin layer on anion exchange membrane for efficient and selective monovalent anion transfer[J]. Desalination, 2017, 410: 55-65. |
26 | Hou L, Wu B, Yu D, et al. Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation[J]. Journal of Membrane Science, 2018, 557: 49-57. |
27 | Wang J J, Yang H C, Wu M B, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. Journal of Materials Chemistry A, 2017, 5(31): 16289-16295. |
28 | Guo C, Li N, Qian X, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: "Drag" effect from carboxyl-containing negative interlayer[J]. Separation and Purification Technology, 2020, 230: 115567. |
29 | Gong G, Wang P, Zhou Z, et al. New insights into the role of an interlayer for the fabrication of highly selective and permeable thin-film composite nanofiltration membrane[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7349-7356. |
30 | Hao L, Liao J, Jiang Y, et al. "Sandwich"-like structure modified anion exchange membrane with enhanced monovalent selectivity and fouling resistant[J]. Journal of Membrane Science, 2018, 556: 98-106. |
31 | Rijnaarts T, Reurink D M, Radmanesh F, et al. Layer-by-layer coatings on ion exchange membranes: effect of multilayer charge and hydration on monovalent ion selectivities[J]. Journal of Membrane Science, 2019, 570: 513-521. |
32 | Lu O, Malaisamy R, Bruening M L. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations[J]. Journal of Membrane Science, 2008, 310(1/2): 76-84. |
33 | Cheng C, Yaroshchuk A, Bruening M L. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes[J]. Langmuir, 2013, 29(6): 1885-1892. |
34 | Cheng C, White N, Shi H, et al. Cation separations in electrodialysis through membranes coated with polyelectrolyte multilayers[J]. Polymer, 2014, 55(6): 1397-1403. |
35 | White N, Misovich M, Yaroshchuk A, et al. Coating of nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6620-6628. |
36 | White N, Misovich M, Alemayehu E, et al. Highly selective separations of multivalent and monovalent cations in electrodialysis through Nafion membranes coated with polyelectrolyte multilayers[J]. Polymer, 2016, 103: 478-485. |
37 | Zhu Y, Ahmad M, Yang L, et al. Adsorption of polyelectrolyte multilayers imparts high monovalent/divalent cation selectivity to aliphatic polyamide cation-exchange membranes[J]. Journal of Membrane Science, 2017, 537: 177-185. |
38 | Afsar N U, Shehzad M A, Irfan M, et al. Cation exchange membrane integrated with cationic and anionic layers for selective ion separation via electrodialysis[J]. Desalination, 2019, 458: 25-33. |
39 | Li J, Yuan S, Wang J, et al. Mussel-inspired modification of ion exchange membrane for monovalent separation[J]. Journal of Membrane Science, 2018, 553: 139-150. |
40 | Jiang C, Zhang D, Muhammad A S, et al. Fouling deposition as an effective approach for preparing monovalent selective membranes[J]. Journal of Membrane Science, 2019, 580: 327-335. |
41 | Du Y, Qiu W Z, Lv Y, et al. Nanofiltration membranes with narrow pore size distribution via contra-diffusion-induced mussel-inspired chemistry[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29696-29704. |
42 | Zhang D, Jiang C, Li Y, et al. Electro-driven in situ construction of functional layer using amphoteric molecule: the role of tryptophan in ion sieving[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36626-36637. |
43 | Li W, Shi C, Zhou A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology, 2017, 186: 233-242. |
44 | Ji W, Afsar N U, Wu B, et al. In-situ crosslinked SPPO/PVA composite membranes for alkali recovery via diffusion dialysis[J]. Journal of Membrane Science, 2019, 590: 117267. |
45 | Afsar N U, Ji W, Wu B, et al. SPPO-based cation exchange membranes with a positively charged layer for cation fractionation[J]. Desalination, 2019, 472: 114145. |
46 | Hou L, Pan J, Yu D, et al. Nanofibrous composite membranes (NFCMs) for mono/divalent cations separation[J]. Journal of Membrane Science, 2017, 528: 243-250. |
47 | Li J, Zhu J, Wang J, et al. Charge-assisted ultrafiltration membranes for monovalent ions separation in electrodialysis[J]. Journal of Applied Polymer Science, 2018, 135(24): 45692. |
48 | Irfan M, Wang Y, Xu T. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity[J]. Chemical Engineering Journal, 2020, 383: 123171. |
49 | Xiao H F, Chu C H, Xu W T, et al. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment[J]. Journal of Membrane Science, 2019, 586: 44-52. |
50 | He Y, Ge L, Ge Z, et al. Monovalent cations permselective membranes with zwitterionic side chains[J]. Journal of Membrane Science, 2018, 563: 320-325. |
51 | Irfan M, Xu T, Ge L, et al. Zwitterion structure membrane provides high monovalent/divalent cation electrodialysis selectivity: investigating the effect of functional groups and operating parameters[J]. Journal of Membrane Science, 2019, 588: 117211. |
52 | Zhou, M Y, Fang L F, Sun C C, et al. Pore size tailoring from ultrafiltration to nanofiltration with PVC-g-PDMA via rapid immersion thermal annealing[J]. Journal of Membrane Science, 2019, 572: 401-409. |
53 | Ge L, Wu L, Wu B, et al. Preparation of monovalent cation selective membranes through annealing treatment[J]. Journal of Membrane Science, 2014, 459: 217-222. |
54 | Shehzad M A, Wang Y, Yasmin A, et al. Biomimetic nanocones that enable high ion permselectivity[J]. Angewandte Chemie-International Edition, 2019, 58(36): 12646-12654. |
55 | Lin C E, Fang L F, Du S Y, et al. A novel positively charged nanofiltration membrane formed via simultaneous cross-linking/quaternization of poly(m-phenylene 5 isophthalamide)/polyethyleneimine blend membrane[J]. Separation and Purification Technology, 2019, 212: 101-109. |
56 | Sheng F, Hou L, Wang X, et al. Electro-nanofiltration membranes with positively charged polyamide layer for cations separation[J]. Journal of Membrane Science, 2020, 594: 117453. |
57 | Du Y, Lv Y, Qiu W Z, et al. Nanofiltration membranes with narrowed pore size distribution via pore wall modification[J]. Chemical Communications, 2016, 52(55): 8589-8592. |
58 | Wen Q, Yan D, Liu F, et al. Highly selective ionic transport through subnanometer pores in polymer films[J]. Advanced Functional Materials, 2016, 26(32): 5796-5803. |
59 | Wang P, Wang M, Liu F, et al. Ultrafast ion sieving using nanoporous polymeric membranes[J]. Nature Communications, 2018, 9(1): 569. |
60 | Shen Q, Xu S J, Xu Z L, et al. Novel thin-film nanocomposite membrane with water-soluble polyhydroxylated fullerene for the separation of Mg2+/Li+ aqueous solution[J]. Journal of Applied Polymer Science, 2019, 136(41): 48029. |
61 | Tang Y J, Shen B J, Huang B Q, et al. High permselectivity thin-film composite nanofiltration membranes with 3D microstructure fabricated by incorporation of beta cyclodextrin[J]. Separation and Purification Technology, 2019, 227: 115718. |
62 | An S, Liu J, Wang J, et al. Synthesis and characterization of organic-inorganic cross-linked membrane for the separation of mono-charged and double charged ions using UV irradiation[J]. Desalination, 2019, 464: 8-17. |
63 | Villalobos L F, Huang T, Peinemann K V. Cyclodextrin films with fast solvent transport and shape-selective permeability[J]. Advanced Materials, 2017, 29(26): 1606641. |
64 | Yao Z, Guo H, Yang Z, et al. Preparation of nanocavity-contained thin film composite nanofiltration membranes with enhanced permeability and divalent to monovalent ion selectivity[J]. Desalination, 2018, 445: 115-122. |
65 | Li J, Zhu J, Yuan S, et al. Mussel-inspired monovalent selective cation exchange membranes containing hydrophilic MIL53(Al) framework for enhanced ion flux[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6275-6283. |
66 | Ji Y L, An Q F, Guo Y S, et al. Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles[J]. Journal of Materials Chemistry A, 2016, 4(11): 4224-4231. |
67 | Cheng L, Liu G, Jin W. Recent progress in two-dimensional-material membranes for gas separation[J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1090-1098. |
68 | Liu G P, Jin W Q, Xu N P. Two-dimensional-material membranes: a new family of high-performance separation membranes[J]. Angewandte Chemie-International Edition, 2016, 55(43): 13384-13397. |
69 | Liu G P, Jin W Q, Xu N P. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15): 5016-5030. |
70 | Liang F, Liu Q, Zhao J, et al. Ultrafast water-selective permeation through graphene oxide membrane with water transport promoters[J]. AIChE Journal, 2019, 66(2): 16812. |
71 | Shen J, Liu G Z, Huang K, et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving[J]. ACS Nano, 2016, 10(3): 3398-3409. |
72 | Wei Y, Wang J, Li H, et al. Partially reduced graphene oxide and chitosan nanohybrid membranes for selective retention of divalent cations[J]. RSC Advances, 2018, 8(25): 13656-13663. |
73 | Ran J, Hu M, Yu D, et al. Graphene oxide embedded "three-phase" membrane to beat "trade-off" in acid recovery[J]. Journal of Membrane Science, 2016, 520: 630-638. |
74 | Zhao Y, Shi W, van der Bruggen B, et al. Tunable nanoscale interlayer of graphene with symmetrical polyelectrolyte multilayer architecture for lithium extraction[J]. Advanced Materials Interfaces, 2018, 5(6): 1701449. |
75 | Zhao Y, Zhu J, Li J, et al. Robust multilayer graphene-organic frameworks for selective separation of monovalent anions[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 18426-18433. |
76 | Zhang H Z, Xu Z L, Ding H, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+and Li+[J]. Desalination, 2017, 420: 158-166. |
77 | Liu T Y, Yuan H G, Li Q, et al. Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh mono-/multivalent ion selectivity[J]. ACS Nano, 2015, 9(7): 7488-7496. |
78 | Zheng J, Li M, Yao Y, et al. Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water[J]. Journal of Materials Chemistry A, 2017, 5(26): 13730-13739. |
79 | Zhao F Y, An Q F, Ji Y L, et al. A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening[J]. Journal of Membrane Science, 2015, 492: 412-421. |
80 | Qiu S, Xue M, Zhu G. Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. |
81 | Li W, Zhang Y, Li Q, et al. Metal-organic framework composite membranes: synthesis and separation applications[J]. Chemical Engineering Science, 2015, 135: 232-257. |
82 | Xu T, Shehzad M A, Yu D, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12(12): 2593-2597. |
83 | Guo Y, Ying Y, Mao Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie-International Edition, 2016, 55(48): 15120-15124. |
84 | Zhang M C, Guan K C, Ji Y F, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications, 2019, 10: 1253. |
85 | Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. |
86 | Hong S, Constans C, Martins M V S, et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity[J]. Nano Letters, 2017, 17(2): 728-732. |
87 | Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
88 | Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550: 380-383. |
89 | Jia Z, Wang Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation[J]. Journal of Materials Chemistry A, 2015, 3(8): 4405-4412. |
90 | Xi Y H, Liu Z, Ji J, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions[J]. Journal of Membrane Science, 2018, 550: 208-218. |
91 | Liang S S, Wang S, Chen L, et al. Controlling interlayer spacings of graphene oxide membranes with cationic for precise sieving of mono-/multi-valent ions[J]. Separation and Purification Technology, 2020, 241: 116738. |
92 | Wei Y, Pastuovic Z, Shen C, et al. Ion beam engineered graphene oxide membranes for mono-/di-valent metal ions separation[J]. Carbon, 2019, 158: 598-606. |
93 | Ren C E, Hatzell K B, Alhabeb M, et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes[J]. Journal of Physical Chemistry Letters, 2015, 6(20): 4026-4031. |
94 | Deng M, Kwac K, Li M, et al. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide[J]. Nano Letters, 2017, 17(4): 2342-2348. |
95 | Wang J, Zhang Z, Zhu J, et al. Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing[J]. Nature Communications, 2020, 11(1): 3540-3540. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[13] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[14] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[15] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||