化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4177-4183.doi: 10.11949/0438-1157.20201920

• 催化、动力学与反应器 • 上一篇    下一篇

庚醛与亚硫酸氢钠加成反应动力学研究

袁慎峰(),万周娜,陈志荣,尹红()   

  1. 浙江大学化学工程与生物工程学院,浙江省化工高效制造技术重点实验室,浙江 杭州 310027
  • 收稿日期:2020-12-20 修回日期:2021-04-09 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 尹红 E-mail:ysf@zju.edu.cn;yinh@zju.edu.cn
  • 作者简介:袁慎峰(1977—),男,博士,副教授,ysf@zju.edu.cn

Study on addition reaction kinetics of heptaldehyde and sodium bisulfite

Shenfeng YUAN(),Zhouna WAN,Zhirong CHEN,Hong YIN()   

  1. Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2020-12-20 Revised:2021-04-09 Published:2021-08-05 Online:2021-08-05
  • Contact: Hong YIN E-mail:ysf@zju.edu.cn;yinh@zju.edu.cn

摘要:

醛能与亚硫酸氢钠发生快速的可逆亲核加成反应,该反应可用于去除混合物中的醛。目前醛类加成的动力学研究多集中于低碳醛或芳香醛,缺少高碳脂肪醛的相关数据,且常用的分析方法如碘量法和紫外分光光度法应用局限性大。以庚醛为研究对象,利用在线红外光谱仪,实时监测了283.15~298.15 K温度下庚醛与亚硫酸氢钠的加成反应过程,通过对实验数据的计算与拟合,求得不同温度的反应速率常数和平衡常数,确定了反应的动力学方程,为庚醛的分离应用提供理论基础。结果表明,随着反应温度升高,庚醛反应速率增大,而平衡转化率减小。庚醛与亚硫酸氢钠的加成反应为放热过程,反应热为-60.01 kJ?mol-1。正反应的活化能为34.68 kJ?mol-1,指前因子为1.369×107 L?mol-1?min-1,逆反应的活化能为94.69 kJ?mol-1,指前因子为2.500×1015 min-1

关键词: 庚醛, 亚硫酸氢钠, 亲核加成反应, 动力学, 平衡

Abstract:

Aldehydes can undergo a rapid reversible nucleophilic addition reaction with sodium bisulfite, which can be used to remove aldehydes from the mixture. The kinetics of these reactions mostly focused on low carbon aliphatic aldehydes and aromatic aldehydes, lacking of kinetic studies on high carbon aliphatic aldehydes, besides, the commonly analytical methods such as iodine titration and ultraviolet spectrophotometry had many limitations in application. In this paper, heptaldehyde was taken as the research object, and the reaction processes between heptaldehyde and sodium bisulfite were monitored by means of ReactIR at 283.15—298.15 K. Through the calculation and fitting of the experimental data, the rate constants and equilibrium constants of the reaction at different temperatures were obtained, and the kinetic equation of the reaction was determined, which provided a theoretical basis for the separation of heptaldehyde. The results show that as the reaction temperature increases, the reaction rate of heptaldehyde increases, while the equilibrium conversion rate decreases. The addition reaction of heptaldehyde and sodium bisulfite is an exothermic process, and the reaction heat is -60.01 kJ?mol-1. The activation energy of the forward reaction is 34.68 kJ?mol-1, and the pre-exponential factor of the forward reaction is 1.369×107 L?mol-1?min-1. The activation energy of the reverse reaction is 94.69 kJ?mol-1, and the pre-exponential factor of the reverse reaction is 2.500×1015 min-1.

Key words: heptaldehyde, sodium bisulfite, nucleophilic addition reaction, kinetics, equilibrium

中图分类号: 

  • TQ 203.7

图1

实验装置示意图1—反应器;2—恒速搅拌电机;3—光纤探头;4—温度计;5—恒温浴锅;6—在线红外主机;7—计算机"

图2

反应过程红外光谱叠加图"

图3

浓度与峰高线性定量关系"

图4

不同温度下计算值与实验值的比较"

表1

速率常数和平衡常数"

T/K

k1'/

(L·mol-1·min-1)

k-1 / min-1Kh

k1/

(L·mol-1·min-1)

K1/

(L·mol-1)

283.154.1008.926×10-30.35645.561623.1
288.155.0891.631×10-20.30316.631406.5
293.157.6933.142×10-20.27489.807312.1
298.159.0516.812×10-20.228311.12163.2

图5

lnk1、lnk-1、lnKh、lnK1与T-1的关系"

表2

羰基化合物与亚硫酸氢钠加成反应的反应热与活化能"

羰基化合物?H /(kJ?mol-1)Ea1 /(kJ?mol-1)文献
甲醛-81.424.9[32-33]
乙醛-63.327.1[17,34]
庚醛-60.0134.68本研究
苯甲醛-51.338.7[16,32]
丙酮-41.3[34]
1 王恩泽, 夏皖东, 范肖南. 浅谈煤炭液化技术研究现状及发展前景[J]. 煤质技术, 2015, 11(6): 5-8.
Wang E Z, Xia W D, Fan X N. Discussion on present status and developing prospects of coal liquefaction techniques[J]. Coal Quality Technology, 2015, 11(6): 5-8.
2 蔡力宏, 梁雪美. 高碳醇的市场应用及煤基费托合成高碳醇的生产工艺[J]. 合成材料老化与应用, 2017, 46(6): 123-127.
Cai L H, Liang X M. Application of higher alcohol and technology of Fischer-Tropsch higher alcohol[J]. Synthetic Materials Aging and Application, 2017, 46(6): 123-127.
3 Drese J H, Talley A D, Jones C W. Aminosilica materials as adsorbents for the selective removal of aldehydes and ketones from simulated bio-oil[J]. ChemSusChem, 2011, 4(3): 379-385.
4 Chan Y H, Loh S K, Chin B L F, et al. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: recent advances and future prospects[J]. Chemical Engineering Journal, 2020, 397: 125406.
5 罗伟昂, 崔建国, 廖正福. 醛的不对称加成反应进展[J]. 化工技术与开发, 2005, 34(3): 21-28.
Luo W A, Cui J G, Liao Z F. Recent development in the asymmetric addition of aldehydes[J]. Technology & Development of Chemical Industry, 2005, 34(3): 21-28.
6 仇春高. 环氧乙烷乙二醇装置全流程优化脱醛工艺研究[J]. 山东化工, 2010, 39(7): 38-41.
Qiu C G. Optimization for the dealdehyde process of EOEG plant[J]. Shandong Chemical Industry, 2010, 39(7): 38-41.
7 邱明荣. 甲醇羰基化合成醋酸脱醛技术进展[J]. 中国石油和化工标准与质量, 2014, (22): 17.
Qiu M R. Progress in dealdehyde-acetate synthesis by methanol carbonylation[J]. China Petroleum and Chemical Standard and Quality, 2014, (22): 17.
8 王志华, 颜剑波, 蒋成君. 反应-萃取去除醛的工艺研究[J]. 浙江化工, 2018, 49(1): 21-23.
Wang Z H, Yan J B, Jiang C J. Removal of aldehydes by coupling reaction-extration method[J]. Zhejiang Chemical Industry, 2018, 49(1): 21-23.
9 Boucher M M, Furigay M H, Quach P K, et al. Liquid-liquid extraction protocol for the removal of aldehydes and highly reactive ketones from mixtures[J]. Organic Process Research & Development, 2017, 21(9): 1394-1403.
10 Furigay M H, Boucher M M, Mizgier N A, et al. Separation of aldehydes and reactive ketones from mixtures using a bisulfite extraction protocol[J]. Journal of Visualized Experiments, 2018, 134: e57639.
11 Nomura A, Jones C W. Airborne aldehyde abatement by latex coatings containing amine-functionalized porous silicas[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 263-271.
12 Blasi M, Barbe J, Maillard B, et al. New methodology for removing carbonyl compounds from sweet wines[J]. Journal of Agricultural and Food Chemistry, 2007, 55(25): 10382-10387.
13 Church A L, Hu M Z, Lee S J, et al. Selective adsorption removal of carbonyl molecular foulants from real fast pyrolysis bio-oils[J]. Biomass & bioenergy, 2020, 136: 105522.
14 陈伦刚, 刘勇, 定明月, 等. Ru催化加氢选择性脱除F-T合成水相中的含氧化合物[J]. 化工学报, 2014, 65(11): 4347-4355.
Chen L G, Liu Y, Ding M Y, et al. Removal of oxygenates in aqueous phase product of F-T process by catalytic hydrogenation over Ru catalyst[J]. CIESC Jorunal, 2014, 65(11): 4347-4355.
15 王安伟. 甲酸供氢的钯催化醛还原为醇的研究[D]. 长沙: 湖南大学, 2013.
Wang A W. Pd-catalyzed reduction of aldehydes to alcohols using formic acid as the hydrogen donor[D]. Changsha: Hunan University, 2013.
16 Stewart T D, Donnally L H. The aldehyde bisulfite compounds(Ⅰ): The rate of dissociation of benzaldehyde sodium bisulfite as measured by its first order reaction with iodine[J]. Journal of the American Chemical Society, 1932, 54(6): 2333-2340.
17 Blackadder D A, Hinshelwood C. The kinetics of the decomposition of the addition compounds formed by sodium bisulphite and a series of aldehydes and ketones. Part I[J]. Journal of the Chemical Society, 1958, (8): 2720-2727.
18 Green L R, Hine J. The pH independent equilibrium-constants and rate constants for formation of bisulfite addition compound of isobutyraldehyde in water[J]. Journal of Organic Chemistry, 1974, 39(26): 3896-3901.
19 Betterton E A, Erel Y, Hoffmann M R. Aldehyde-bisulfite adducts:prediction of some of their thermodynamic and kinetic properties[J]. Environmental Science & Technology, 1988, 22(1): 92-99.
20 Olson T M, Hoffmann M R. Hydroxyalkylsulfonate formation: its role as a S(Ⅳ) reservoir in atmospheric water droplets[J]. Atmospheric Environment, 1989, 23(5): 985-997.
21 Olson T M, Boyce S D, Hoffmann M R. Kinetics, thermodynamics, and mechanism of the formation of benzaldehyde-S(Ⅳ) adducts[J]. Journal of Physical Chemistry, 1986, 90(11): 2482-2488.
22 Sousa J A, Margerum J D. Equilibrium constant of benzaldehyde sodium bisulfite[J]. Journal of the American Chemical Society, 1960, 82(12): 3013-3016.
23 Carter C F, Lange H, Ley S V, et al. ReactIR flow cell: a new analytical tool for continuous flow chemical processing[J]. Organic Process Research & Development, 2010, 14(2): 393-404.
24 Willcox D, Nouch R, Kingsbury A, et al. Kinetic analysis of copper(Ⅰ)/feringa-phosphoramidite catalyzed AIEt(3) 1,4-addition to cyclohex-2-en-1-one[J]. ACS Catalysis, 2017, 7(10): 6901-6908.
25 王永胜, 王涛, 丛湧, 等. ReactIR15对线粒体靶向抗氧剂SKQ1合成的在线监测[J]. 兰州理工大学学报, 2017, 43(6): 74-77.
Wang Y S, Wang T, Cong Y, et al. Online monitoring of mitochondria targeted antioxidant SKQ1 synthesis with ReactIR15[J]. Journal of Lanzhou University of Technology, 2017, 43(6): 74-77.
26 Hosoya M, Nishijima S, Kurose N. Management of the heat of reaction under continuous flow conditions using in-line monitoring technologies[J]. Organic Process Research & Development, 2020, 24(6): 1095-1103.
27 张艳华. 原位红外技术在动态分析中的应用[J]. 印制电路信息, 2018, 26(1): 20-25.
Zhang Y H. Application of in situ infrared technology in dynamic analysis[J]. Printed Circuit Information, 2018, 26(1): 20-25.
28 Rao K S, St-Jean F, Kumar A. Quantitation of a ketone enolization and a vinyl sulfonate stereoisomer formation using inline IR spectroscopy and modeling[J]. Organic Process Research & Development, 2019, 23 (5): 945-951.
29 Deng H, Shen Z, Li L, et al. Real-time monitoring of ring-opening polymerization of tetrahydrofuran via in situ Fourier transform infrared spectroscopy[J]. Journal of Applied Polymer Science, 2014, 131(15): 338-347.
30 Jencks W P. Mechanism and catalysis of simple carbonyl group reactions[J]. Progress in Physical Organic Chemistry, 1964, 2: 63-128.
31 Bloch C, Rumpf P. A kinetic method for spectrophotometric determination of the degree of hydration of aldehydes[J]. Compt. Rend., 1953, 237: 619-21.
32 Deister U, Neeb R, Helas G, et al. Temperature dependence of the equilibrium CH2(OH)2 + HSO3- = CH2(OH)SO3-+ H2O in aqueous solution[J]. The Journal of Physical Chemistry, 1986, 90(14): 3213-3217.
33 Boyce S D, Hoffmann M R. Kinetics and mechanism of the formation of hydroxymethanesulfonic acid at low pH[J]. The Journal of Physical Chemistry, 1984, 88(20): 4740-4746.
34 Benkelberg H J, Hamm S, Warneck P. Henry's law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite[J]. Journal of Atmospheric Chemistry, 1995, 20(1): 17-34.
35 Schecker H G, Schulz G. Hydration kinetics of formaldehyde in aqueous solution[J]. Zeitschrift Fur Physikalische Chemie-Frankfurt, 1969, 65(1/2/3/4): 221-224.
36 Edwards J O, Ibnerasa K M, Choi E I, et al. Kinetic deuterium isotope effect in the nitrosation of aniline. The deuterium isotope effect on three equilibrium constants[J]. Journal of Physical Chemistry, 1962, 66(6): 1212-1213.
[1] 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108.
[2] 褚有群, 葛展榜, 焦玉峰, 张建平, 郭冠璇, 朱英红. 有机-水混合溶剂中氯离子对C—H键的电氧化腈化性能[J]. 化工学报, 2022, 73(7): 3018-3025.
[3] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[4] 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
[5] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[6] 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843.
[7] 乃学瑛, 吴鹏, 程远, 肖剑飞, 刘鑫, 董亚萍. 水热生长碱式硫酸镁纳米线结晶动力学研究[J]. 化工学报, 2022, 73(7): 3038-3044.
[8] 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
[9] 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588.
[10] 杨晖, 李宏泽, 陈泉, 郑泽希, 李然, 孙其诚. 从质量流向漏斗流转变过程中的动力学分析[J]. 化工学报, 2022, 73(6): 2722-2731.
[11] 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495.
[12] 陈泉, 郑泽希, 李然, 孙其诚, 杨晖. 散斑能见度光谱法测量筒仓内颗粒流的颗粒温度[J]. 化工学报, 2022, 73(6): 2603-2611.
[13] 管小平, 杨宁. 基于介尺度稳定性条件的多相流曳力与群体平衡模型[J]. 化工学报, 2022, 73(6): 2427-2437.
[14] 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221.
[15] 苏晓辉, 张弛, 徐志锋, 金辉, 王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究[J]. 化工学报, 2022, 73(5): 1974-1985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!