化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3466-3477.doi: 10.11949/0438-1157.20210062

• 综述与专论 • 上一篇    下一篇

固/液界面纳米气泡形成及稳定性研究进展

王宗旭1,2(),李紫欣1,2,白璐1,董海峰1,3,张香平1,2,3()   

  1. 1.中国科学院过程工程研究所,北京 100190
    2.中国科学院大学中丹学院,北京 100049
    3.先进能源科学与技术 广东省实验室,广东 惠州 516003
  • 收稿日期:2021-01-11 修回日期:2021-05-04 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 张香平 E-mail:zxwang@ipe.ac.cn;xpzhang@ipe.ac.cn
  • 作者简介:王宗旭(1990—),男,博士研究生,zxwang@ipe.ac.cn
  • 基金资助:
    国家重点研发计划项目(2020YFA0710200);国家自然科学基金重点项目(21838010);中国科学院科研仪器设备研制项目(YJKYYQ20200062)

Formation and stability of nanobubble at solid/liquid interface

WANG Zongxu1,2(),LI Zixin1,2,BAI Lu1,DONG Haifeng1,3,ZHANG Xiangping1,2,3()   

  1. 1.Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2.Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
    3.Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, Guangdong, China
  • Received:2021-01-11 Revised:2021-05-04 Published:2021-07-05 Online:2021-07-05
  • Contact: ZHANG Xiangping E-mail:zxwang@ipe.ac.cn;xpzhang@ipe.ac.cn

摘要:

固/液界面上形成界面纳米气泡(SNBs),广泛存在于电催化、流体输送、矿物浮选等领域中,并影响各个过程的效率,因此明确其形成及稳定机理对过程调控具有重要意义。首先从实验观察和模拟计算两个角度,对纳米气泡的研究方法进行探讨,综述了不同气体类型、固体界面性质、液相添加剂下纳米气泡的形成规律。由于目前纳米气泡形成后的稳定性尚不十分明确,主要总结了现阶段广为接受的接触线钉扎稳定机制,并分析了该领域的研究现状。此外,考虑到离子液体作为重要的化工溶剂,概述了该体系中微纳气泡的相关研究。最后简要对未来工作进行了展望,以期为离子液体体系中纳米气泡的研究提供新思路。

关键词: 纳米气泡, 气体, 界面, 添加剂, 稳定性, 离子液体

Abstract:

The behavior of surface nanobubbles (SNBs) form at the solid/liquid interface is widely found in industrial fields such as electrocatalysis, fluid transport, and mineral flotation, which can affect the efficiency of the processes in these fields. So, it is essential to regulate the process of bubble formation, in which the clarification of their formation and stabilization mechanisms were required. Here, this article described the research methodologies of nanobubbles formed from both experimental and computational perspectives, discussed the regular pattern of nanobubbles formation under gas types, solid interface properties, and liquid phase additives. Since the stability of nanobubbles after formation is not very clear at present, this article integrated the widely accepted stabilization mechanism of contact line pinning to show the current status of this research area. In addition, considering ionic liquids as important chemical solvents, this article provided an overview of the research on micro-nano bubble formation in ionic-liquid-system. Finally, this review concluded with a prospect of the future, and this article was expected to provide new insights for the study of nanobubbles in ionic-liquid-system.

Key words: nanobubbles, gas, interface, additive, stability, ionic liquids

中图分类号: 

  • TQ 530.11

图1

扫描电化学池显微镜生成单个H2纳米气泡图示[39]"

图2

液相中纳米气泡成核类型及能量图示[64](a)平面上的非均质成核;(b)球形纳米颗粒上的非均质成核;(c)均质成核(红色线)、平面上的非均质成核(黑色线)、球形纳米颗粒上的非均质成核(蓝色线)"

1 Zhang X, Winnik F M. Preface to the nanobubbles special issue[J]. Langmuir, 2016, 32(43): 11071.
2 张雪花, 胡钧. 固液界面纳米气泡的研究进展[J]. 化学进展, 2004, 16(5): 673-681.
Zhang X H, Hu J. Nanobubbles at the solid/water interface[J]. Progress in Chemistry, 2004, 16(5): 673-681.
3 Attard P, Moody M P, Tyrrell J W G. Nanobubbles: the big picture[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 314(1/2/3/4): 696-705.
4 Chan C U, Ohl C D. Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics[J]. Physical Review Letters, 2012, 109(17): 174501.
5 Alheshibri M, Qian J, Jehannin M, et al. A history of nanobubbles[J]. Langmuir, 2016, 32(43): 11086-11100.
6 Zou J, Zhang H, Guo Z, et al. Surface nanobubbles nucleate liquid boiling[J]. Langmuir, 2018, 34(46): 14096-14101.
7 Ke S, Xiao W, Quan N N, et al. Formation and stability of bulk nanobubbles in different solutions[J]. Langmuir, 2019, 35(15): 5250-5256.
8 Zhang X H, Maeda N. Interfacial gaseous states on crystalline surfaces[J]. The Journal of Physical Chemistry C, 2011, 115(3): 736-743.
9 Zhang Y, Zhao L, Deng S, et al. Effect of nanobubble evolution on hydrate process: a review[J]. Journal of Thermal Science, 2019, 28(5): 948-961.
10 Angulo A, van der Linde P, Gardeniers H, et al. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579.
11 Hu H B, Wang D Z, Ren F, et al. A comparative analysis of the effective and local slip lengths for liquid flows over a trapped nanobubble[J]. International Journal of Multiphase Flow, 2018, 104: 166-173.
12 Wang Y F, Pan Z C, Luo X M, et al. Effect of nanobubbles on adsorption of sodium oleate on calcite surface[J]. Minerals Engineering, 2019, 133: 127-137.
13 Azevedo A, Oliveira H, Rubio J. Bulk nanobubbles in the mineral and environmental areas: updating research and applications[J]. Advances in Colloid and Interface Science, 2019, 271: 101992.
14 Calgaroto S, Wilberg K Q, Rubio J. On the nanobubbles interfacial properties and future applications in flotation[J]. Minerals Engineering, 2014, 60: 33-40.
15 Kalacheva A V, Medvedev V A, Serkov A T. Continuous deaeration of spinning solutions of polyacrylonitrile in dimethyl acetamide[J]. Fibre Chemistry, 2001, 33(1): 9-11.
16 王丽娟, 党晓波, 郑桂宁. 碳纤维原丝纺丝液脱单、脱泡工艺及装置技术研究[J]. 合成纤维, 2017, 46(11): 16-19.
Wang L J, Dang X B, Zheng G N. Study on the process and device of de-monomer and de-bubble of carbon fiber precursor spinning solution[J]. Synthetic Fiber in China, 2017, 46(11): 16-19.
17 Pereiro I, Fomitcheva K A, Petrini L, et al. Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics[J]. Lab on a Chip, 2019, 19(14): 2296-2314.
18 Fatemi N, Dong Z Y, van Gerven T, et al. Microbubbles as heterogeneous nucleation sites for crystallization in continuous microfluidic devices[J]. Langmuir, 2019, 35(1): 60-69.
19 Zhu J, An H, Alheshibri M, et al. Cleaning with bulk nanobubbles[J]. Langmuir, 2016, 32(43): 11203-11211.
20 Etchepare R, Azevedo A, Calgaroto S, et al. Removal of ferric hydroxide by flotation with micro and nanobubbles[J]. Separation and Purification Technology, 2017, 184: 347-353.
21 Cho S H, Kim J Y, Chun J H, et al. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269(1/2/3): 28-34.
22 Postnikov A V, Uvarov I V, Penkov N V, et al. Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis[J]. Nanoscale, 2018, 10(1): 428-435.
23 Yang J W, Duan J M, Fornasiero D, et al. Very small bubble formation at the solid-water interface[J]. The Journal of Physical Chemistry B, 2003, 107(25): 6139-6147.
24 Li D Y, Qi L T, Liu Y B, et al. Study on the formation and properties of trapped nanobubbles and surface nanobubbles by spontaneous and temperature difference methods[J]. Langmuir, 2019, 35(37): 12035-12041.
25 Lou S T, Ouyang Z Q, Zhang Y, et al. Nanobubbles on solid surface imaged by atomic force microscopy[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2000, 18(5): 2573.
26 Walczyk W, Schönherr H. Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles[J]. Langmuir, 2013, 29(2): 620-632.
27 Teshima H, Takahashi K, Takata Y, et al. Wettability of AFM tip influences the profile of interfacial nanobubbles[J]. Journal of Applied Physics, 2018, 123(5): 054303.
28 Kundu P, Liu S Y, Chen F R, et al. In-situ generation of highly stable, sub 10-nm oxygen nanobubbles in liquid environmental tem[C]//2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). Shanghai, China, 2016: 133-136.
29 Chen J, Zhou K, Wang Y, et al. Measuring the activation energy barrier for the nucleation of single nanosized vapor bubbles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(26): 12678-12683.
30 Lemay S G. Noise as data: nucleation of electrochemically generated nanobubbles[J]. ACS Nano, 2019, 13(6): 6141-6144.
31 Luo L, White H S. Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes[J]. Langmuir, 2013, 29(35): 11169-11175.
32 Chen Q J, Luo L, Faraji H, et al. Electrochemical measurements of single H2 nanobubble nucleation and stability at Pt nanoelectrodes[J]. The Journal of Physical Chemistry Letters, 2014, 5(20): 3539-3544.
33 Chen Q J, Wiedenroth H S, German S R, et al. Electrochemical nucleation of stable N2 nanobubbles at Pt nanoelectrodes[J]. Journal of the American Chemical Society, 2015, 137(37): 12064-12069.
34 Ren H, German S R, Edwards M A, et al. Electrochemical generation of individual O2 nanobubbles via H2O2 oxidation[J]. The Journal of Physical Chemistry Letters, 2017, 8(11): 2450-2454.
35 Ren H, Edwards M A, Wang Y F, et al. Electrochemically controlled nucleation of single CO2 nanobubbles via formate oxidation at Pt nanoelectrodes[J]. The Journal of Physical Chemistry Letters, 2020, 11(4): 1291-1296.
36 German S R, Edwards M A, Ren H, et al. Critical nuclei size, rate, and activation energy of H2 gas nucleation[J]. Journal of the American Chemical Society, 2018, 140(11): 4047-4053.
37 Soto Á M, German S R, Ren H, et al. The nucleation rate of single O2 nanobubbles at Pt nanoelectrodes[J]. Langmuir, 2018, 34(25): 7309-7318.
38 Bentley C L, Edmondson J, Meloni G N, et al. Nanoscale electrochemical mapping[J]. Analytical Chemistry, 2019, 91(1): 84-108.
39 Wang Y F, Gordon E, Ren H. Mapping the nucleation of H2 bubbles on polycrystalline Pt via scanning electrochemical cell microscopy[J]. The Journal of Physical Chemistry Letters, 2019, 10(14): 3887-3892.
40 Che Z, Theodorakis P E. Formation, dissolution and properties of surface nanobubbles [J]. Journal of Colloid and Interface Science, 2017, 487: 123-129.
41 Liu Y W, Zhang X R. Molecular dynamics simulation of nanobubble nucleation on rough surfaces[J]. The Journal of Chemical Physics, 2017, 146(16): 164704.
42 Xiao Q X, Liu Y W, Guo Z J, et al. Solvent exchange leading to nanobubble nucleation: a molecular dynamics study[J]. Langmuir, 2017, 33(32): 8090-8096.
43 Liu Y W, Edwards M A, German S R, et al. The dynamic steady state of an electrochemically generated nanobubble[J]. Langmuir, 2017, 33(8): 1845-1853.
44 Liu H B, Pan L M, Wen J. Numerical simulation of hydrogen bubble growth at an electrode surface[J]. The Canadian Journal of Chemical Engineering, 2016, 94(1): 192-199.
45 Wu C J, Chu K C, Sheng Y J, et al. Sliding dynamic behavior of a nanobubble on a surface[J]. The Journal of Physical Chemistry C, 2017, 121(33): 17932-17940.
46 Liu Y W, Zhang X R. Nanobubble stability induced by contact line pinning[J]. The Journal of Chemical Physics, 2013, 138(1): 014706.
47 Okitsu K, Suzuki T, Takenaka N, et al. Acoustic multibubble cavitation in water:   a new aspect of the effect of a rare gas atmosphere on bubble temperature and its relevance to sonochemistry[J]. The Journal of Physical Chemistry B, 2006, 110(41): 20081-20084.
48 Brotchie A, Statham T, Zhou M F, et al. Acoustic bubble sizes, coalescence, and sonochemical activity in aqueous electrolyte solutions saturated with different gases[J]. Langmuir, 2010, 26(15): 12690-12695.
49 van Limbeek M A J, Seddon J R T. Surface nanobubbles as a function of gas type[J]. Langmuir, 2011, 27(14): 8694-8699.
50 Yang J W, Duan J M, Fornasiero D, et al. Kinetics of CO2 nanobubble formation at the solid/water interface[J]. Physical Chemistry Chemical Physics, 2007, 9(48): 6327.
51 Fang C K, Ko H C, Yang C W, et al. Nucleation processes of nanobubbles at a solid/water interface[J]. Sci. Rep., 2016, 6: 24651.
52 Hasan M N, Rabbi K F, Mukut K M, et al. Nano scale dynamics of bubble nucleation in confined liquid subjected to rapid cooling: effect of solid-liquid interfacial wettability[C]// 7th Bsme International Conference on Thermal Engineering. Dhaka, Bangladesh, 2017.
53 Ye Y M, Klimchuk S, Shang M W, et al. Acoustic bubble suppression by constructing a hydrophilic coating on HDPE surface[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16944-16950.
54 Faber M S, Dziedzic R, Lukowski M A, et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures[J]. Journal of the American Chemical Society, 2014, 136(28): 10053-10061.
55 Lu Z Y, Zhu W, Yu X Y, et al. Ultrahigh hydrogen evolution performance of under-water“superaerophobic”MoS2 nanostructured electrodes[J]. Advanced Materials, 2014, 26(17): 2683-2687.
56 Chen Q J, Ranaweera R, Luo L. Hydrogen bubble formation at hydrogen-insertion electrodes[J]. The Journal of Physical Chemistry C, 2018, 122(27): 15421-15426.
57 German S R, Edwards M A, Chen Q J, et al. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions[J]. Faraday Discussions, 2016, 193: 223-240.
58 Rooze J, Rebrov E V, Schouten J C, et al. Dissolved gas and ultrasonic cavitation — a review[J]. Ultrasonics Sonochemistry, 2013, 20(1): 1-11.
59 Xiao W, Zhao Y L, Yang J, et al. Effect of sodium oleate on the adsorption morphology and mechanism of nanobubbles on the mica surface[J]. Langmuir, 2019, 35(28): 9239-9245.
60 Yasui K, Tuziuti T, Izu N, et al. Is surface tension reduced by nanobubbles (ultrafine bubbles) generated by cavitation?[J]. Ultrasonics Sonochemistry, 2019, 52: 13-18.
61 Ashokkumar M, Hodnett M, Zeqiri B, et al. Acoustic emission spectra from 515 kHz cavitation in aqueous solutions containing surface-active solutes[J]. Journal of the American Chemical Society, 2007, 129(8): 2250-2258.
62 Lee J, Kentish S, Ashokkumar M. Effect of surfactants on the rate of growth of an air bubble by rectified diffusion[J]. The Journal of Physical Chemistry B, 2005, 109(30): 14595-14598.
63 Fernández D, Maurer P, Martine M, et al. Bubble formation at a gas-evolving microelectrode[J]. Langmuir, 2014, 30(43): 13065-13074.
64 Fatemi N, Devos C, de Cordt G, et al. Effect of sodium dodecyl sulfate on the continuous crystallization in microfluidic devices using microbubbles[J]. Chemical Engineering & Technology, 2019, 42(10): 2105-2112.
65 Zhang M M, Seddon J R T. Nanobubble-nanoparticle interactions in bulk solutions[J]. Langmuir, 2016, 32(43): 11280-11286.
66 Xiao W, Wang X X, Zhou L M, et al. Influence of mixing and nanosolids on the formation of nanobubbles[J]. The Journal of Physical Chemistry B, 2019, 123(1): 317-323.
67 Olszok V, Rivas-Botero J, Wollmann A, et al. Particle-induced nanobubble generation for material-selective nanoparticle flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592: 124576.
68 Borkent B M, Dammer S M, Schönherr H, et al. Superstability of surface nanobubbles[J]. Physical Review Letters, 2007, 98(20): 204502.
69 Seddon J R, Kooij E S, Poelsema B, et al. Surface bubble nucleation stability[J]. Physical Review Letters, 2011, 106(5): 056101.
70 Sun Y J, Xie G Y, Peng Y L, et al. Stability theories of nanobubbles at solid-liquid interface: a review[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495: 176-186.
71 Das S, Snoeijer J H, Lohse D. Effect of impurities in description of surface nanobubbles[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(5): 056310.
72 Guo Z J, Wang X, Zhang X R. Stability of surface nanobubbles without contact line pinning[J]. Langmuir, 2019, 35(25): 8482-8489.
73 Uchida T, Liu S, Enari M, et al. Effect of NaCl on the lifetime of micro- and nanobubbles[J]. Nanomaterials, 2016, 6(2): E31.
74 Meegoda J N, Hewage S A, Batagoda J H. Application of the diffused double layer theory to nanobubbles[J]. Langmuir, 2019, 35(37): 12100-12112.
75 Zhang H G, Guo Z J, Zhang X R. Surface enrichment of ions leads to the stability of bulk nanobubbles[J]. Soft Matter, 2020, 16(23): 5470-5477.
76 Zhang X H, Chan D Y C, Wang D Y, et al. Stability of interfacial nanobubbles[J]. Langmuir, 2013, 29(4): 1017-1023.
77 Liu Y, Wang J, Zhang X, et al. Contact line pinning and the relationship between nanobubbles and substrates[J]. The Journal of Chemical Physics, 2014, 140(5): 054705.
78 Liu Y W, Zhang X R. A unified mechanism for the stability of surface nanobubbles: contact line pinning and supersaturation[J]. The Journal of Chemical Physics, 2014, 141(13): 134702.
79 Lohse D, Zhang X H. Pinning and gas oversaturation imply stable single surface nanobubbles[J]. Physical Review E, 2015, 91(3): 031003.
80 Shin D, Park J B, Kim Y J, et al. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells[J]. Nature Communications, 2015, 6: 6068.
81 Wang Y F, Luo X M, Qin W Q, et al. New insights into the contact angle and formation process of nanobubbles based on line tension and pinning[J]. Applied Surface Science, 2019, 481: 1585-1594.
82 German S R, Chen Q J, Edwards M A, et al. Electrochemical measurement of hydrogen and nitrogen nanobubble lifetimes at Pt nanoelectrodes[J]. Journal of the Electrochemical Society, 2016, 163(4): H3160-H3166.
83 Chen Q J, Liu Y W, Edwards M A, et al. Nitrogen bubbles at Pt nanoelectrodes in a nonaqueous medium: oscillating behavior and geometry of critical nuclei[J]. Analytical Chemistry, 2020, 92(9): 6408-6414.
84 Shang D W, Zhang X P, Zeng S J, et al. Protic ionic liquid [Bim][NTf2] with strong hydrogen bond donating ability for highly efficient ammonia absorption[J]. Green Chemistry, 2017, 19(4): 937-945.
85 Feng J P, Zeng S J, Feng J Q, et al. CO2 electroreduction in ionic liquids: a review[J]. Chinese Journal of Chemistry, 2018, 36(10): 961-970.
86 王均凤, 聂毅, 王斌琦, 等. 离子液体法再生纤维素纤维制造技术及发展趋势[J]. 化工学报, 2019, 70(10): 3836-3846.
Wang J F, Nie Y, Wang B Q, et al. Manufacturing technology and development direction on regenerated cellulose fibers using ionic liquids[J]. CIESC Journal, 2019, 70(10): 3836-3846.
87 Taylor S F R, Brittle S A, Desai P, et al. Factors affecting bubble size in ionic liquids[J]. Physical Chemistry Chemical Physics, 2017, 19(22): 14306-14318.
88 Qin K, Wang K, Luo R, et al. Dispersion of supercritical carbon dioxide to [Emim][BF4] with a T-junction tubing connector[J]. Chemical Engineering and Processing - Process Intensification, 2018, 127: 58-64.
89 张香平, 曾少娟, 冯佳奇, 等. CO2化工: 离子微环境调控的CO2绿色高效转化[J]. 中国科学: 化学, 2020, 50(2): 282-298.
Zhang X P, Zeng S J, Feng J Q, et al. CO2 chemical engineering: CO2 green conversion enhanced by ionic liquid microhabitat[J]. Scientia Sinica (Chimica), 2020, 50(2): 282-298.
90 Feng J P, Zeng S J, Liu H Z, et al. Insights into carbon dioxide electroreduction in ionic liquids: carbon dioxide activation and selectivity tailored by ionic microhabitat[J]. ChemSusChem, 2018, 11(18): 3191-3197.
91 Zhao X, Ranaweera R, Luo L. Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration[J]. Chemical Communications, 2019, 55(10): 1378-1381.
92 Chew E K, Lee K Y, Lau E V. The role of carbon chain length in the attachment between microbubbles and aqueous solutions of ionic liquid[J]. Journal of Colloid and Interface Science, 2017, 506: 452-459.
93 冯建朋, 张香平, 尚大伟, 等. 离子液体中电化学还原CO2研究评述与展望[J]. 化工学报, 2018, 69(1): 69-75.
Feng J P, Zhang X P, Shang D W, et al. Review and prospect of CO2 electro-reduction in ionic liquids[J]. CIESC Journal, 2018, 69(1): 69-75.
[1] 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256.
[2] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[3] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[4] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[5] 朱晓兵, 李佳佳, 李怡宁, 杨洪月, 李小松, 刘景林. 氧化锰电催化析氧反应及其电极界面特性[J]. 化工学报, 2021, 72(S1): 398-405.
[6] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[7] 安美燕, 王洁冰, 徐震原, 王如竹. 基于LiCl溶液太阳能界面蒸发的连续式空气取水[J]. 化工学报, 2021, 72(S1): 70-76.
[8] 于筱溪, 闫真真, 蒋其辉, 吴霞, 张余晓, 王晓娟, 黄方. 溴化1-辛基-3-甲基咪唑聚集状态对蛋白质结晶的影响研究[J]. 化工学报, 2021, 72(9): 4854-4860.
[9] 胡小龙, 公文学, 彭艺, 胡阳, 汤颖, 何辉, 李文愿, 赵钟兴, 赵祯霞. 配体诱导制备NM88(D)/COF-OMe复合材料及可见光芬顿联合降解抗生素磺胺甲嘧啶研究[J]. 化工学报, 2021, 72(9): 4730-4739.
[10] 李南星, 张麟. 靶向于Galectin-10蛋白的哮喘抑制剂设计[J]. 化工学报, 2021, 72(9): 4847-4853.
[11] 孟璐璐, 谢添玺, 陈志豪, 宇高義郎. 材料交错分布型传热板表面异态干涉沸腾传热特性研究[J]. 化工学报, 2021, 72(9): 4564-4572.
[12] 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
[13] 李闯, 张扬, 刘小娟, 王学重. 添加剂作用下阿司匹林结晶模拟和实验研究[J]. 化工学报, 2021, 72(9): 4796-4807.
[14] 冯宇, 张鑫, 张曼, 王建成, 阎智锋, 李甫, 费鹏飞, 卢建军, 米杰. 静电纺丝纤维对煤基气体污染物脱除研究进展[J]. 化工学报, 2021, 72(8): 3933-3945.
[15] 严如奇, 丁雪兴, 徐洁, 洪先志, 包鑫. 基于湍流模型的S-CO2干气密封流场与稳态性能分析[J]. 化工学报, 2021, 72(8): 4292-4303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫平祥, 蓝兴英, 徐春明, 高金森. RFCC沉降器内油浆气化率的初步研究[J]. CIESC Journal, 2007, 15(3): 315 -319 .
[2] 徐欧官, 苏宏业, 计建炳, 金晓明, 褚健. 甲苯歧化与C9芳烃烷基转移反应动力学模型和模拟分析[J]. CIESC Journal, 2007, 15(3): 326 -332 .
[3] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[4] 周彩荣, 石晓华, 王海峰, 高玉国, 蒋登高. 反式-1,2-环基二醇+乙酸丁酯+水三元体系固液相平衡[J]. CIESC Journal, 2007, 15(3): 449 -452 .
[5] 王紫色, 许淳淳, 曹霞, 徐奔. 仿古铸铁腐蚀产物的形貌、结构的演化历程及其危害性研究[J]. CIESC Journal, 2007, 15(3): 433 -438 .
[6] 刘会娥, 魏飞, 杨艳辉, 金涌. 内构件存在时提升管内流动及颗粒混合行为研究

[J]. CIESC Journal, 2003, 11(4): 371 -376 .
[7] 刘文红, 郭烈锦, 吴铁军, 张西民. 水平长直管内油水两相流流动特性实验研究[J]. CIESC Journal, 2003, 11(5): 491 -496 .
[8] 牟盛静, 苏宏业, 古勇, 褚健. 工业PTA氧化过程的多目标优化[J]. CIESC Journal, 2003, 11(5): 536 -541 .
[9] 周彩荣, 章亚东, 蒋登高. 1,2-环己二醇的焓和热容数据研究[J]. CIESC Journal, 2003, 11(5): 598 -600 .
[10] 徐冬梅, 胡仰栋, 华贲, 王修林. 含再生再利用的用水系统的最小新鲜水和相应的再生水用量的确定[J]. CIESC Journal, 2003, 11(3): 257 -263 .