化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2556-2563.DOI: 10.11949/0438-1157.20181046
肖永厚1,2(),肖红岩2,李本源2,秦剑亮2,邱爽2,贺高红1,2(
)
收稿日期:
2018-09-19
修回日期:
2019-05-24
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
贺高红
作者简介:
肖永厚(1977—),男,博士,教授级高级工程师,<email>yonghou.xiao@dlut.edu.cn</email>
基金资助:
Yonghou XIAO1,2(),Hongyan XIAO2,Benyuan LI2,Jianliang QIN2,Shuang QIU2,Gaohong HE1,2(
)
Received:
2018-09-19
Revised:
2019-05-24
Online:
2019-07-05
Published:
2019-07-05
Contact:
Gaohong HE
摘要:
工业氦气主要通过深冷、膜分离和变压吸附(PSA)耦合从天然气提取,其中PSA是获得高纯He的关键。吸附过程模拟可以克服实验局限,有效指导工程设计、优化工艺条件。以体积分数90%的粗He为原料,利用Aspen Adsorption软件建立He/CH4 单塔PSA模型,获得穿透曲线。以此为基础,建立双塔分离流程,分析吸附、顺放、逆放、冲洗、升压步骤中吸附塔内气相组成的变化,五步最佳操作时间分别为 60、180、30、60和180 s。在三塔流程中,一个循环周期的最佳吸附时间和均压时间分别为135 s和90 s,产品纯度可达98.42%,回收率达60.45%。在五塔流程中,考虑到各步骤时间的匹配及生产的连续性,需要对一个周期内的循环时间进行优化。循环时间为300~340 s时,产品纯度达到99.07%以上。
中图分类号:
肖永厚, 肖红岩, 李本源, 秦剑亮, 邱爽, 贺高红. 基于Aspen Adsorption的氦气/甲烷吸附分离过程模拟优化[J]. 化工学报, 2019, 70(7): 2556-2563.
Yonghou XIAO, Hongyan XIAO, Benyuan LI, Jianliang QIN, Shuang QIU, Gaohong HE. Optimization of helium/methane adsorption separation process based on Aspen Adsorption simulation[J]. CIESC Journal, 2019, 70(7): 2556-2563.
Parameter | He | CH4 |
---|---|---|
IP1/(kmol·kg-1·bar-1) | 2.483×10-5 | 0.00111 |
IP2/bar-1 | 0.00405 | 0.0251 |
表1 氦气和甲烷的吸附等温参数
Table 1 Adsorption isotherm parameters of He and CH4
Parameter | He | CH4 |
---|---|---|
IP1/(kmol·kg-1·bar-1) | 2.483×10-5 | 0.00111 |
IP2/bar-1 | 0.00405 | 0.0251 |
Parameter | Value |
---|---|
bed height, Hb / m | 1.00 |
bed diameter, Db / m | 0.25 |
bed void fraction, Ei/(m3 void·(m3 bed)-1) | 0.37 |
particle void fraction, Ep/(m3 void·(m3 bead) -1) | 0.21 |
particle density, ρ /(kg·m-3) | 670.0 |
particle radius, Rp / m | 0.001 |
particle shape factor | 1.0 |
mass transfer coefficient, MTC(CH4)/s-1 | 0.047 |
mass transfer coefficient, MTC(He)/s-1 | 0.05 |
表2 吸附模拟操作参数
Table 2 Adsorption simulation operation parameters
Parameter | Value |
---|---|
bed height, Hb / m | 1.00 |
bed diameter, Db / m | 0.25 |
bed void fraction, Ei/(m3 void·(m3 bed)-1) | 0.37 |
particle void fraction, Ep/(m3 void·(m3 bead) -1) | 0.21 |
particle density, ρ /(kg·m-3) | 670.0 |
particle radius, Rp / m | 0.001 |
particle shape factor | 1.0 |
mass transfer coefficient, MTC(CH4)/s-1 | 0.047 |
mass transfer coefficient, MTC(He)/s-1 | 0.05 |
塔1操作步骤 | 塔2操作步骤 | 时间/s |
---|---|---|
进料 | 逆放 | 30 |
吸附 | 冲洗 | 60 |
顺放(均压) | 升压(均压) | 180 |
逆放 | 进料 | 30 |
冲洗 | 吸附 | 60 |
升压(均压) | 顺放(均压) | 180 |
表 3 双塔PSA模拟时序
Table 3 Time series of pressure swing adsorption simulation in twin towers
塔1操作步骤 | 塔2操作步骤 | 时间/s |
---|---|---|
进料 | 逆放 | 30 |
吸附 | 冲洗 | 60 |
顺放(均压) | 升压(均压) | 180 |
逆放 | 进料 | 30 |
冲洗 | 吸附 | 60 |
升压(均压) | 顺放(均压) | 180 |
步骤 | 压力×10-5/Pa |
---|---|
进料 | 10 |
吸附 | 10 |
顺放 | 6.86 |
逆放 | 1.03 |
冲洗 | 1.22 |
升压 | 3.32 |
表4 吸附塔入口处的压力
Table 4 Pressure at inlet of adsorption tower
步骤 | 压力×10-5/Pa |
---|---|
进料 | 10 |
吸附 | 10 |
顺放 | 6.86 |
逆放 | 1.03 |
冲洗 | 1.22 |
升压 | 3.32 |
时间/s | 塔1 | 塔2 | 塔3 |
---|---|---|---|
45 | 进料升压 | 逆放减压 | 高压吸附 |
45 | 高压吸附 | 均压升2-3 | 均压降2-3 |
45 | 高压吸附 | 进料升压 | 逆流减压 |
45 | 均压降1-3 | 高压吸附 | 均压升1-3 |
45 | 逆放减压 | 高压吸附 | 进料升压 |
45 | 均压升1-2 | 均压降1-2 | 高压吸附 |
表5 三塔-六步PSA流程时序控制
Table 5 Triple tower six step PSA process sequence control
时间/s | 塔1 | 塔2 | 塔3 |
---|---|---|---|
45 | 进料升压 | 逆放减压 | 高压吸附 |
45 | 高压吸附 | 均压升2-3 | 均压降2-3 |
45 | 高压吸附 | 进料升压 | 逆流减压 |
45 | 均压降1-3 | 高压吸附 | 均压升1-3 |
45 | 逆放减压 | 高压吸附 | 进料升压 |
45 | 均压升1-2 | 均压降1-2 | 高压吸附 |
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 |
---|---|---|---|---|---|
30 | 高压吸附 | 均压升2-5 | 冲洗再生 | 逆放减压 | 均压降2-5 |
30 | 高压吸附 | 进料升压 | 均压升3-5 | 逆放减压 | 均压降3-5 |
30 | 均压降1-3 | 高压吸附 | 均压升1-3 | 冲洗再生 | 逆放减压 |
30 | 均压降1-4 | 高压吸附 | 进料升压 | 均压升1-4 | 逆放减压 |
30 | 逆放减压 | 均压降2-4 | 高压吸附 | 均压升2-4 | 冲洗再生 |
30 | 逆放减压 | 均压降2-5 | 高压吸附 | 进料升压 | 均压升2-5 |
30 | 冲洗再生 | 逆放减压 | 均压降3-5 | 高压吸附 | 均压升3-5 |
30 | 均压升1-3 | 逆放减压 | 均压降1-3 | 高压吸附 | 进料升压 |
30 | 均压升1-4 | 冲洗再生 | 逆放减压 | 均压降1-4 | 高压吸附 |
30 | 进料升压 | 均压升2-4 | 逆放减压 | 均压降2-4 | 高压吸附 |
表6 五塔-十步PSA流程时序控制
Table 6 Sequence control of five tower ten step PSA process
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 |
---|---|---|---|---|---|
30 | 高压吸附 | 均压升2-5 | 冲洗再生 | 逆放减压 | 均压降2-5 |
30 | 高压吸附 | 进料升压 | 均压升3-5 | 逆放减压 | 均压降3-5 |
30 | 均压降1-3 | 高压吸附 | 均压升1-3 | 冲洗再生 | 逆放减压 |
30 | 均压降1-4 | 高压吸附 | 进料升压 | 均压升1-4 | 逆放减压 |
30 | 逆放减压 | 均压降2-4 | 高压吸附 | 均压升2-4 | 冲洗再生 |
30 | 逆放减压 | 均压降2-5 | 高压吸附 | 进料升压 | 均压升2-5 |
30 | 冲洗再生 | 逆放减压 | 均压降3-5 | 高压吸附 | 均压升3-5 |
30 | 均压升1-3 | 逆放减压 | 均压降1-3 | 高压吸附 | 进料升压 |
30 | 均压升1-4 | 冲洗再生 | 逆放减压 | 均压降1-4 | 高压吸附 |
30 | 进料升压 | 均压升2-4 | 逆放减压 | 均压降2-4 | 高压吸附 |
1 | DasN K, KumarP, MallikC, et al. Development of a helium purification system using pressure swing adsorption[J]. Current Science, 2012, 103: 631-634. |
2 | AndersonS T. Economics, helium, and the US federal helium reserve: summary and outlook[J]. Natural Resources Research, 2018, 27(4): 455-477. |
3 | RuffordT E, ChanK I, HuangS H, et al. A review of conventional and emerging process technologies for the recovery of helium from natural gas[J]. Adsorption Science & Technology, 2014, 32(1): 49-72. |
4 | ZartmanR E, ReynoldsJ H, WasserburgG J. Helium, argon and carbon in some natural gases[J]. Journal of Geophysical Research, 1961, 66(1): 277-306. |
5 | SircarS. Pressure swing adsorption[J]. Ind. Eng. Chem. Res., 2002, 41: 1389-1392. |
6 | ScholesC A, GoshU K, HoM T. The economics of helium separation and purification by gas separation membranes[J]. Industrial & Engineering Chemistry Research, 2017, 56: 5014-5020. |
7 | LiB, HeG, JiangX, et al. Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery[J]. Frontiers of Chemical Science and Engineering, 2016, 10: 255-264. |
8 | WesslingM, LopezM L, StrathmannH. Accelerated plasticization of thin-film composite membranes used in gas separation[J]. Separation and Purification Technology, 2001, 24: 223-233. |
9 | DasN K, ChaudhuriH, BhandariR K, et al. Purification of helium from natural gas by pressure swing adsorption[J]. Current Science, 2008, 95: 1684-1687. |
10 | GolmakaniA, FatemiS, TamnanlooJ. CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34[J]. Industrial & Engineering Chemistry Research, 2016, 55: 334-350. |
11 | 邢国海. 天然气提取氦气技术现状与发展[J]. 天然气工业, 2008, 28(8): 114-116. |
XingG H. Status quo and development of the technology on helium gas abstracted from natural gas[J]. Natural Gas Industry, 2008, 28(8): 114-116. | |
12 | AsgariM, AnisiH, MohammadiH, et al. Designing a commercial scale pressure swing adsorber for hydrogen purification[J]. Petroleum & Coal, 2014, 56 (5): 552-561. |
13 | AnisuzzamanS M, AwangB, KrishnaiahD, et al. A study on dynamic simulation of phenol adsorption in activated carbon packed bed column[J]. Journal of King Saud University - Engineering Sciences, 2016, 28: 47-55. |
14 | LiD D, ZhouY, ShenY H, et al. Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process[J]. Chemical Engineering Journal, 2016, 297: 315-324. |
15 | ThomasR J, DuttaR, GhoshP, et al. Applicability of equations of state for modeling helium systems[J]. Cryogenics, 2012, 52: 375-381. |
16 | XiaoJ S, PengY Z, BenardP, et al. Thermal effects on breakthrough curves of pressure swing adsorption for hydrogen purification[J]. International Journal of Hydrogen Energy, 2016, 41: 8236-8245. |
17 | 阎海宇, 付强, 张东辉, 等. 真空变压吸附捕集烟道气中二氧化碳的模拟、实验及分析[J]. 化工学报, 2016, 67(6): 2371-2379. |
YanH Y, FuQ, ZhangD H, et al. Simulation, experimentation and analyzation of vacuum pressure swing adsorption process for CO2 capture from dry flue gas[J]. CIESC Journal, 2016, 67(6): 2371-2379. | |
18 | 韩治洋, 丁兆阳, 张东辉, 等. 真空变压吸附分离氮气甲烷的模拟与控制[J]. 化工学报, 2018, 69(2): 750-758. |
HanZ Y, DingZ Y, ZhangD H, et al. Simulation and control of vacuum pressure swing adsorption for N2/CH4 separations[J]. CIESC Journal, 2018, 69(2): 750-758. | |
19 | ShafeeyanM S, DaudW, ShamiriA. A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption[J]. Chemical Engineering Research & Design, 2014, 92: 961-988. |
20 | MendesA M M, CostaC A V, RodriguesA E. Oxygen separation from air by PSA: modelling and experimental results(Ⅰ): Isothermal operation[J]. Separation and Purification Technology, 2001, 24: 173-188. |
21 | DantasT L P, LunaF M T, SilvaI J, et al. Carbon dioxide-nitrogen separation through pressure swing adsorption[J]. Chemical Engineering Journal, 2011, 172: 698-704. |
22 | ChahbaniM H, TondeurD. Mass transfer kinetics in pressure swing adsorption[J]. Separation and Purification Technology, 2000, 20: 185-196. |
23 | JeeJ G, KimM B, LeeC H. Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve[J]. Chemical Engineering Science, 2005, 60: 869-882. |
24 | WonW, LeeS, LeeK S. Modeling and parameter estimation for a fixed-bed adsorption process for CO2 capture using zeolite 13X[J]. Separation and Purification Technology, 2012, 85: 120-129. |
25 | CavenatiS, GrandeC A, RodriguesA E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures[J]. Journal of Chemical and Engineering Data, 2004, 49: 1095-1101. |
26 | JahromiP E, FatemiS, VataniA, et al. Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption[J]. Separation and Purification Technology, 2018, 193: 91-102. |
27 | VemulaR R, KothareM V, SircarS. Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process[J]. Separation Science and Technology, 2017, 52(1): 35-41. |
28 | DelgadoJ A, UguinaM A, SoteloJ L, et al. Fixed-bed adsorption of carbon dioxide/methane mixtures on silicalite pellets[J]. Adsorption-Journal of the International Adsorption Society, 2006, 12: 5-18. |
29 | DelgadoJ A, UguinaM A, SoteloJ L, et al. Fixed-bed adsorption of carbon dioxide-helium, nitrogen-helium and carbon dioxide-nitrogen mixtures onto silicalite pellets[J]. Separation and Purification Technology, 2006, 49: 91-100. |
30 | 刘冰, 孙伟娜, 张东辉, 等. 带循环的二阶变压吸附碳捕集工艺模拟、实验及分析[J]. 化工学报, 2018, 69(11): 4788-4797. |
LiuB, SunW N, ZhangD H, et al. Simulation, experimentation and analyzation of two stage pressure swing adsorption process for CO2 capture [J]. CIESC Journal, 2018, 69(11): 4788-4797. | |
31 | 孙伟娜, 阎海宇, 张东辉. 真空变压吸附分离氮气甲烷流程灵敏度分析与优化[J]. 化工学报, 2018, 69(2): 598-605. |
SunW N, YanH Y, ZhangD H. Sensitivity analysis and optimization of vacuum pressure swing adsorption process for N2/CH4 separation[J]. CIESC Journal, 2018, 69(2): 598-605. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[9] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[10] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[11] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[12] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[13] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[14] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[15] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 995
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1292
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||