1 |
ZhaoH Y, SongQ, LiuS C, et al. Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism[J]. Energy Conversion and Management, 2018, 161: 13-26.
|
2 |
GuanG Q, FushimiC, TsutsumiA. Prediction of flow behavior of the riser in a novel high solids flux circulating fluidized bed for steam gasification of coal or biomass[J]. Chemical Engineering Journal, 2010, 164(1): 221-229.
|
3 |
WangM Y, JinL J, LiY, et al. In situ catalytic upgrading of coal pyrolysis tar over carbon-based catalysts coupled with CO2 reforming of methane[J]. Energy & Fuels, 2018, 31(9): 119-128.
|
4 |
HanJ Z, WangX D, YueJ R, et al. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98-106.
|
5 |
ZhengH, WangW, XuR S, et al. Effect of the particle size of iron ore on the pyrolysis kinetic behaviour of coal-iron ore briquettes[J]. Energies, 2018, 11(10): 2595-2611.
|
6 |
ShangguanJ, ZhaoY S, FanH L, et al. Desulfurization behavior of zinc oxide based sorbent modified by the combination of Al2O3 and K2CO3[J]. Fuel, 2013, 108(11): 80-84.
|
7 |
DingL, ZhouZ J, GuoQ H, et al. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142: 134-144.
|
8 |
ChengX H, HeX M, ChenC, et al. Influence of Fe2O3/CaO catalysts on the pyrolysis products of low-rank coal[J]. Energy Technology, 2015, 3(10): 1068-1071.
|
9 |
FuY, GuoY H, ZhangK X. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy & Fuels, 2016, 30(3): 2428-2433.
|
10 |
ZhuT Y, ZhangS Y, HuangJ J, et al. Effect of calcium oxide on pyrolysis of coal in a fluidized bed[J]. Fuel Processing Technology, 2000, 64(1): 271-284.
|
11 |
ZhangX, LiangL T, ZhangQ, et al. A study on catalytic depolymerization of a typical perhydrous coal for improving tar yield[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138(1): 242-248.
|
12 |
LiangL T, HuangW, GaoF X, et al. Mild catalytic depolymerization of low rank coals: a novel way to increase tar yield[J]. RSC Advances, 2015, 5(4): 2493-2503.
|
13 |
LiangL T, HuaiJ T, ZhangQ, et al. Catalytic depolymerization of a typical lignite for improving tar yield by Co and Zn catalyst[J]. Scientific Reports, 2017, 7(1): 14433-14441.
|
14 |
MaffeiT, FrassoldatiA, CuociA, et al. Predictive one step kinetic model of coal pyrolysis for CFD applications[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2401-2410.
|
15 |
KobayashiH. Coal devolatilization at high temperatures[J]. Symposium on Combustion, 1977, 16(1): 411-425.
|
16 |
SommarivaS, MaffeiT, MigliavaccaG, et al. A predictive multi-step kinetic model of coal devolatilization[J]. Fuel, 2010, 89(2): 318-328.
|
17 |
WangJ L, LiP, LiangL T, et al. Kinetics modeling of low-rank coal pyrolysis based on a three gaussian-DAEM -reaction model[J]. Energy & Fuels, 2016, 30(11): 9693-9702.
|
18 |
SolomonP R, HamblenD G, CarangeloR M, et al. General model of coal devolatilization[J]. Energy & Fuels, 1988, 2(4): 405-422.
|
19 |
NiksaS, KersteinA R. Flashchain theory for rapid coal devolatilization kinetics(1): Formulation[J]. Energy & Fuels, 1991, 5(5): 647-665.
|
20 |
NiksaS. Flashchain theory for rapid coal devolatilization kinetics(7): Predicting the release of oxygen species from various coals[J]. Veterinary Clinics of North America Small Animal Practice, 1996, 41(4): 703-707.
|
21 |
GrantD M, PugmireR J, FletcherT H, et al. Chemical model of coal devolatilization using percolation lattice statistics[J]. Energy & Fuels, 1989, 3(2): 175-186.
|
22 |
FletcherT H, KersteinA R, PugmireR J, et al. A chemical percolation model for devolatilization: temperature and heating rate effects[J]. Am. Chem. Soc., Div. Fuel Chem. Prepr. Pap., 1989, 34(4): 1272-1279.
|
23 |
FletcherT H, KersteinA R, PugmireR J, et al. Chemical percolation model for devolatilization(2): Temperature and heating rate effects on product yields[J]. Energy & Fuels, 1990, 4(1): 54-60.
|
24 |
FletcherT H, KersteinA R, PugmireR J, et al. Chemical percolation model for devolatilization(3): Direct use of carbon-13 NMR data to predict effects of coal type [J]. Energy & Fuels, 1992, 6(4): 414-431.
|
25 |
SolumM S, PugmireR J, GrantD M. Carbon-13 solid-state NMR of argonne-premium coals[J]. Energy & Fuels, 1989, 3(2): 187-193.
|
26 |
FletcherT H. Time-resolved particle temperature and mass loss measurements of a bituminous coal during devolatilization[J]. Combustion and Flame, 1989, 78(2): 223-236.
|
27 |
SolomonP R, SerioM A, SuubergE M. Coal pyrolysis: experiments, kinetic rates and mechanisms[J]. Progress in Energy and Combustion Science, 1992, 18(2): 133-220.
|
28 |
GenettiD, FletcherT H, PugmireR J. Development and application of a correlation of 13C NMR chemical structural analyses of coal based on elemental composition and volatile matter content [J]. Energy & Fuels, 1999, 13(1): 60-68.
|
29 |
FletcherT H, PondH R, WebsterJ, et al. Prediction of tar and light gas during pyrolysis of black liquor and biomass[J]. Energy & Fuels, 2012, 26(6): 3381-3387.
|
30 |
LewisA D, FletcherT H. Prediction of sawdust pyrolysis yields from a flat-flame burner using the CPD model[J]. Energy & Fuels, 2013, 27(2): 942-953.
|
31 |
TanV, DeG A, HosseiniT, et al. Scrap tyre pyrolysis: modified chemical percolation devolatilization (M-CPD) to describe the influence of pyrolysis conditions on product yields[J]. Waste Management, 2018, 76(3): 516-527.
|
32 |
ChengY, LiT Y, AnH, et al. Modeling pyrolysis of asphalt using chemical percolation devolatilization theory[J]. Fuel, 2017, 206: 364-370.
|
33 |
LiuG R, SongH J, WuJ H. Prediction of low-rank coal pyrolysis behavior by chemical percolation devolatilization model[J]. Environmental Progress & Sustainable Energy, 2016, 35(4): 1215-1220.
|
34 |
YanB H, ChengY, XuP C, et al. Generalized model of heat transfer and volatiles evolution inside particles for coal devolatilization[J]. AIChE Journal, 2014, 60(8): 2893-2906.
|
35 |
FletcherT H. Compilation of Sandia Coal Devolatilization Data: Milestone Report[M]. Hardesty D R. available NTIS: DOE’S Pittsburgh Energy Technology Center, 1992: 0709.
|
36 |
梁丽彤. 低阶煤催化解聚研究[D]. 太原: 太原理工大学, 2016.
|
|
LiangL T. Study on catalytic depolymerization of low rank coal [D]. Taiyuan: Taiyuan University of Technology, 2016.
|