化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 265-274.DOI: 10.11949/0438-1157.20190257
白佳杰1(),梁丽彤2,张忠林1(
),李鹏2,3(
),杨景轩1,郝晓刚1,黄伟2,官国清4
收稿日期:
2019-03-19
修回日期:
2019-04-10
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
张忠林,李鹏
作者简介:
白佳杰(1994—),女,硕士研究生,基金资助:
Jiajie BAI1(),Litong LIANG2,Zhonglin ZHANG1(
),Peng LI2,3(
),Jingxuan YANG1,Xiaogang HAO1,Wei HUANG2,Guoqing GUAN4
Received:
2019-03-19
Revised:
2019-04-10
Online:
2019-09-06
Published:
2019-09-06
Contact:
Zhonglin ZHANG,Peng LI
摘要:
低阶煤催化解聚过程定量分析和放大需要合理描述该过程的宏观动力学模型,使用化学渗透脱挥发分(CPD)模型结合陕西长焰煤的催化解聚实验,对低阶煤催化解聚过程进行了定量分析。综合对催化剂作用机理的认识,结合催化解聚实验结果确定相应表观动力学参数,所得模拟结果与实验结果趋势一致、吻合良好,其较好地体现了不同热解过程差异,低温下催化解聚产物释放量较少,温度升高后产物量才会高于原煤热解。模型中催化剂对焦油产率的影响体现在复合速率常数、交联反应活化能上,随两者增大,焦油产率均增加;Fe基催化剂有助于促进侧链断裂,提高气体产率,Zn基催化剂可抑制交联反应,但交联反应活化能较大时,受热解温度限制,焦油量增加变缓。
中图分类号:
白佳杰, 梁丽彤, 张忠林, 李鹏, 杨景轩, 郝晓刚, 黄伟, 官国清. 基于CPD模型的低阶煤催化解聚过程模拟分析[J]. 化工学报, 2019, 70(S2): 265-274.
Jiajie BAI, Litong LIANG, Zhonglin ZHANG, Peng LI, Jingxuan YANG, Xiaogang HAO, Wei HUANG, Guoqing GUAN. Simulation and analysis of catalytic depolymerization of low-rank coal by chemical percolation devolatilization model[J]. CIESC Journal, 2019, 70(S2): 265-274.
参数 | 数值 | 描述 |
---|---|---|
Eb | 232.086 kJ·mol-1 | 桥键断裂活化能 |
Ab | 2.06×1015 s-1 | 桥键断裂频率因子 |
βb | 7.5 kJ·mol-1 | 桥键断裂活化能的标准偏差 |
Eg | 289 kJ·mol-1 | 气体形成活化能 |
Ag | 3×1015 s-1 | 气体释放频率因子 |
βg | 33.9 kJ·mol-1 | 气体释放活化能的标准偏差 |
ρ | 0.9 | 复合速率常数(kδ/kc) |
Ecr | 272 kJ·mol-1 | 交联反应活化能 |
Acr | 3×1015 s-1 | 交联反应频率因子 |
表1 CPD模型的动力学参数
Table 1 Kinetics parameters of CPD model
参数 | 数值 | 描述 |
---|---|---|
Eb | 232.086 kJ·mol-1 | 桥键断裂活化能 |
Ab | 2.06×1015 s-1 | 桥键断裂频率因子 |
βb | 7.5 kJ·mol-1 | 桥键断裂活化能的标准偏差 |
Eg | 289 kJ·mol-1 | 气体形成活化能 |
Ag | 3×1015 s-1 | 气体释放频率因子 |
βg | 33.9 kJ·mol-1 | 气体释放活化能的标准偏差 |
ρ | 0.9 | 复合速率常数(kδ/kc) |
Ecr | 272 kJ·mol-1 | 交联反应活化能 |
Acr | 3×1015 s-1 | 交联反应频率因子 |
工业分析/%① | 元素分析/%② | ||||||
---|---|---|---|---|---|---|---|
A | V | M | FC③ | C | H | N | O |
8.26 | 34.31 | 3.06 | 54.37 | 81.44 | 4.84 | 1.10 | 10.33 |
表2 煤种的工业分析与元素分析
Table 2 Proximate and ultimate analysis of coal sample
工业分析/%① | 元素分析/%② | ||||||
---|---|---|---|---|---|---|---|
A | V | M | FC③ | C | H | N | O |
8.26 | 34.31 | 3.06 | 54.37 | 81.44 | 4.84 | 1.10 | 10.33 |
温度/K | 陕西原煤热解产率/%(质量分数) | 加FeCl3催化解聚产率/%(质量分数) | 加ZnCl2催化解聚产率/%(质量分数) | ||||||
---|---|---|---|---|---|---|---|---|---|
焦油 | 气体 | 半焦 | 焦油 | 气体 | 半焦 | 焦油 | 气体 | 半焦 | |
298 | 0 | 0 | 100(煤) | 0 | 0 | 100(煤) | 0 | 0 | 100(煤) |
573 | 0.194 | 0.970 | 98.836 | 0.166 | 1.099 | 98.735 | 0.164 | 0.729 | 99.107 |
673 | 1.029 | 3.987 | 94.984 | 1.263 | 4.033 | 94.704 | 1.752 | 2.586 | 95.662 |
773 | 6.485 | 11.227 | 82.288 | 7.122 | 11.550 | 81.328 | 8.805 | 9.616 | 81.579 |
873 | 7.206 | 20.188 | 72.606 | 8.230 | 21.800 | 69.970 | 9.810 | 19.076 | 71.114 |
表3 陕西原煤及添加催化剂解聚实验结果
Table 3 Experimental results of pyrolysis of raw coal with or without catalyst
温度/K | 陕西原煤热解产率/%(质量分数) | 加FeCl3催化解聚产率/%(质量分数) | 加ZnCl2催化解聚产率/%(质量分数) | ||||||
---|---|---|---|---|---|---|---|---|---|
焦油 | 气体 | 半焦 | 焦油 | 气体 | 半焦 | 焦油 | 气体 | 半焦 | |
298 | 0 | 0 | 100(煤) | 0 | 0 | 100(煤) | 0 | 0 | 100(煤) |
573 | 0.194 | 0.970 | 98.836 | 0.166 | 1.099 | 98.735 | 0.164 | 0.729 | 99.107 |
673 | 1.029 | 3.987 | 94.984 | 1.263 | 4.033 | 94.704 | 1.752 | 2.586 | 95.662 |
773 | 6.485 | 11.227 | 82.288 | 7.122 | 11.550 | 81.328 | 8.805 | 9.616 | 81.579 |
873 | 7.206 | 20.188 | 72.606 | 8.230 | 21.800 | 69.970 | 9.810 | 19.076 | 71.114 |
陕西煤 | p0 | c0 | Mclust | Mδ | σ+1 |
---|---|---|---|---|---|
校正前 | 0.59 | 0 | 317 | 30.8 | 5.17 |
校正后 | 0.59 | 0.21 | 317 | 29 | 5.17 |
表4 煤种的化学结构参数
Table 4 Chemical structure parameters of coal
陕西煤 | p0 | c0 | Mclust | Mδ | σ+1 |
---|---|---|---|---|---|
校正前 | 0.59 | 0 | 317 | 30.8 | 5.17 |
校正后 | 0.59 | 0.21 | 317 | 29 | 5.17 |
动力学参数 | SXYM | SX+FeCl3 | SX+ZnCl2 |
---|---|---|---|
Eb/(kJ·mol-1) | 232.086 | 232.086 | 232.086 |
Ab/s-1 | 2.06×1015 | 2.06×1015 | 2.06×1015 |
βb/(kJ·mol-1) | 7.5 | 7.5 | 7.5 |
Eg/(kJ·mol-1) | 289 | 280 | 289 |
Ag/s-1 | 3×1015 | 3×1015 | 3×1015 |
βg/(kJ·mol-1) | 33.9 | 25.1 | 29.3 |
ρ | 0.9 | 1.1 | 1.2 |
Ecr/(kJ·mol-1) | 272 | 272 | 301.3 |
Acr/s-1 | 3×1015 | 3×1015 | 2.5×1015 |
表5 催化解聚过程中的动力学参数
Table 5 Kinetic parameters in catalytic depolymerization
动力学参数 | SXYM | SX+FeCl3 | SX+ZnCl2 |
---|---|---|---|
Eb/(kJ·mol-1) | 232.086 | 232.086 | 232.086 |
Ab/s-1 | 2.06×1015 | 2.06×1015 | 2.06×1015 |
βb/(kJ·mol-1) | 7.5 | 7.5 | 7.5 |
Eg/(kJ·mol-1) | 289 | 280 | 289 |
Ag/s-1 | 3×1015 | 3×1015 | 3×1015 |
βg/(kJ·mol-1) | 33.9 | 25.1 | 29.3 |
ρ | 0.9 | 1.1 | 1.2 |
Ecr/(kJ·mol-1) | 272 | 272 | 301.3 |
Acr/s-1 | 3×1015 | 3×1015 | 2.5×1015 |
1 | ZhaoH Y, SongQ, LiuS C, et al. Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism[J]. Energy Conversion and Management, 2018, 161: 13-26. |
2 | GuanG Q, FushimiC, TsutsumiA. Prediction of flow behavior of the riser in a novel high solids flux circulating fluidized bed for steam gasification of coal or biomass[J]. Chemical Engineering Journal, 2010, 164(1): 221-229. |
3 | WangM Y, JinL J, LiY, et al. In situ catalytic upgrading of coal pyrolysis tar over carbon-based catalysts coupled with CO2 reforming of methane[J]. Energy & Fuels, 2018, 31(9): 119-128. |
4 | HanJ Z, WangX D, YueJ R, et al. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98-106. |
5 | ZhengH, WangW, XuR S, et al. Effect of the particle size of iron ore on the pyrolysis kinetic behaviour of coal-iron ore briquettes[J]. Energies, 2018, 11(10): 2595-2611. |
6 | ShangguanJ, ZhaoY S, FanH L, et al. Desulfurization behavior of zinc oxide based sorbent modified by the combination of Al2O3 and K2CO3[J]. Fuel, 2013, 108(11): 80-84. |
7 | DingL, ZhouZ J, GuoQ H, et al. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142: 134-144. |
8 | ChengX H, HeX M, ChenC, et al. Influence of Fe2O3/CaO catalysts on the pyrolysis products of low-rank coal[J]. Energy Technology, 2015, 3(10): 1068-1071. |
9 | FuY, GuoY H, ZhangK X. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy & Fuels, 2016, 30(3): 2428-2433. |
10 | ZhuT Y, ZhangS Y, HuangJ J, et al. Effect of calcium oxide on pyrolysis of coal in a fluidized bed[J]. Fuel Processing Technology, 2000, 64(1): 271-284. |
11 | ZhangX, LiangL T, ZhangQ, et al. A study on catalytic depolymerization of a typical perhydrous coal for improving tar yield[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138(1): 242-248. |
12 | LiangL T, HuangW, GaoF X, et al. Mild catalytic depolymerization of low rank coals: a novel way to increase tar yield[J]. RSC Advances, 2015, 5(4): 2493-2503. |
13 | LiangL T, HuaiJ T, ZhangQ, et al. Catalytic depolymerization of a typical lignite for improving tar yield by Co and Zn catalyst[J]. Scientific Reports, 2017, 7(1): 14433-14441. |
14 | MaffeiT, FrassoldatiA, CuociA, et al. Predictive one step kinetic model of coal pyrolysis for CFD applications[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2401-2410. |
15 | KobayashiH. Coal devolatilization at high temperatures[J]. Symposium on Combustion, 1977, 16(1): 411-425. |
16 | SommarivaS, MaffeiT, MigliavaccaG, et al. A predictive multi-step kinetic model of coal devolatilization[J]. Fuel, 2010, 89(2): 318-328. |
17 | WangJ L, LiP, LiangL T, et al. Kinetics modeling of low-rank coal pyrolysis based on a three gaussian-DAEM -reaction model[J]. Energy & Fuels, 2016, 30(11): 9693-9702. |
18 | SolomonP R, HamblenD G, CarangeloR M, et al. General model of coal devolatilization[J]. Energy & Fuels, 1988, 2(4): 405-422. |
19 | NiksaS, KersteinA R. Flashchain theory for rapid coal devolatilization kinetics(1): Formulation[J]. Energy & Fuels, 1991, 5(5): 647-665. |
20 | NiksaS. Flashchain theory for rapid coal devolatilization kinetics(7): Predicting the release of oxygen species from various coals[J]. Veterinary Clinics of North America Small Animal Practice, 1996, 41(4): 703-707. |
21 | GrantD M, PugmireR J, FletcherT H, et al. Chemical model of coal devolatilization using percolation lattice statistics[J]. Energy & Fuels, 1989, 3(2): 175-186. |
22 | FletcherT H, KersteinA R, PugmireR J, et al. A chemical percolation model for devolatilization: temperature and heating rate effects[J]. Am. Chem. Soc., Div. Fuel Chem. Prepr. Pap., 1989, 34(4): 1272-1279. |
23 | FletcherT H, KersteinA R, PugmireR J, et al. Chemical percolation model for devolatilization(2): Temperature and heating rate effects on product yields[J]. Energy & Fuels, 1990, 4(1): 54-60. |
24 | FletcherT H, KersteinA R, PugmireR J, et al. Chemical percolation model for devolatilization(3): Direct use of carbon-13 NMR data to predict effects of coal type [J]. Energy & Fuels, 1992, 6(4): 414-431. |
25 | SolumM S, PugmireR J, GrantD M. Carbon-13 solid-state NMR of argonne-premium coals[J]. Energy & Fuels, 1989, 3(2): 187-193. |
26 | FletcherT H. Time-resolved particle temperature and mass loss measurements of a bituminous coal during devolatilization[J]. Combustion and Flame, 1989, 78(2): 223-236. |
27 | SolomonP R, SerioM A, SuubergE M. Coal pyrolysis: experiments, kinetic rates and mechanisms[J]. Progress in Energy and Combustion Science, 1992, 18(2): 133-220. |
28 | GenettiD, FletcherT H, PugmireR J. Development and application of a correlation of 13C NMR chemical structural analyses of coal based on elemental composition and volatile matter content [J]. Energy & Fuels, 1999, 13(1): 60-68. |
29 | FletcherT H, PondH R, WebsterJ, et al. Prediction of tar and light gas during pyrolysis of black liquor and biomass[J]. Energy & Fuels, 2012, 26(6): 3381-3387. |
30 | LewisA D, FletcherT H. Prediction of sawdust pyrolysis yields from a flat-flame burner using the CPD model[J]. Energy & Fuels, 2013, 27(2): 942-953. |
31 | TanV, DeG A, HosseiniT, et al. Scrap tyre pyrolysis: modified chemical percolation devolatilization (M-CPD) to describe the influence of pyrolysis conditions on product yields[J]. Waste Management, 2018, 76(3): 516-527. |
32 | ChengY, LiT Y, AnH, et al. Modeling pyrolysis of asphalt using chemical percolation devolatilization theory[J]. Fuel, 2017, 206: 364-370. |
33 | LiuG R, SongH J, WuJ H. Prediction of low-rank coal pyrolysis behavior by chemical percolation devolatilization model[J]. Environmental Progress & Sustainable Energy, 2016, 35(4): 1215-1220. |
34 | YanB H, ChengY, XuP C, et al. Generalized model of heat transfer and volatiles evolution inside particles for coal devolatilization[J]. AIChE Journal, 2014, 60(8): 2893-2906. |
35 | FletcherT H. Compilation of Sandia Coal Devolatilization Data: Milestone Report[M]. Hardesty D R. available NTIS: DOE’S Pittsburgh Energy Technology Center, 1992: 0709. |
36 | 梁丽彤. 低阶煤催化解聚研究[D]. 太原: 太原理工大学, 2016. |
LiangL T. Study on catalytic depolymerization of low rank coal [D]. Taiyuan: Taiyuan University of Technology, 2016. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[5] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[10] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[11] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[12] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[13] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[14] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[15] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 440
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||