化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 287-293.DOI: 10.11949/0438-1157.20190464
收稿日期:
2019-05-05
修回日期:
2019-05-08
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
郑成
作者简介:
杨铃(1978—),女,硕士研究生,副教授,基金资助:
Ling YANG1(),Cheng ZHENG2(),Zhenming LI2
Received:
2019-05-05
Revised:
2019-05-08
Online:
2019-09-06
Published:
2019-09-06
Contact:
Cheng ZHENG
摘要:
酯化反应是重要有机合成反应之一,广泛应用于药物、材料、食品和香料等生产中。传统方法合成酯类具有反应时间长、产率低、污染大、副反应多及后处理困难等缺点;微波-离子液体合成法融合微波及离子液体两者优势,具有快速、高效、选择性好、产物易分离和对环境友好等特点。采用离子液体1-丁基-3-甲基咪唑硫酸氢盐作为催化剂,通过微波反应技术合成柠檬酸三丁酯。考察了反应物料醇酸比、催化剂用量、反应时间对反应最终转化率的影响,并通过正交实验对微波合成的工艺条件进行优化设计,得出离子液体催化下微波合成的最佳条件为:催化剂用量15%,反应物料醇酸比6.2∶1,微波反应时间4 h,反应温度118℃,微波功率600 W,转化率为71.78%。
中图分类号:
杨铃,郑成,李镇明. 微波协同离子液体催化合成柠檬酸三丁酯[J]. 化工学报, 2019, 70(S2): 287-293.
Ling YANG,Cheng ZHENG,Zhenming LI. Microwave assisted synthesis of tributyl citrate by ionic liquids[J]. CIESC Journal, 2019, 70(S2): 287-293.
水平 | A (醇酸比) | B (催化剂用量) | C (反应时间) |
---|---|---|---|
1 | 5.8∶1 | 13% | 2 h |
2 | 6∶1 | 15% | 3 h |
3 | 6.2∶1 | 17% | 4 h |
表1 正交表设计
Table 1 Design of orthogonal tables
水平 | A (醇酸比) | B (催化剂用量) | C (反应时间) |
---|---|---|---|
1 | 5.8∶1 | 13% | 2 h |
2 | 6∶1 | 15% | 3 h |
3 | 6.2∶1 | 17% | 4 h |
实验号 | A | B | C | 转化率/% |
---|---|---|---|---|
1 | 2(6∶1) | 1(13%) | 2(3 h) | 55.46 |
2 | 2(6∶1) | 2(15%) | 3(4 h) | 70.82 |
3 | 2(6∶1) | 3(17%) | 1(2 h) | 58.55 |
4 | 1(5.8∶1) | 1(13%) | 1(2 h) | 59.36 |
5 | 1(5.8∶1) | 2(15%) | 2(3 h) | 70.54 |
6 | 1(5.8∶1) | 3(17%) | 3(4 h) | 54.19 |
7 | 3(6.2∶1) | 1(13%) | 3(4 h) | 68.08 |
8 | 3(6.2∶1) | 2(15%) | 1(2 h) | 60.37 |
9 | 3(6.2∶1) | 3(17%) | 2(3 h) | 62.80 |
K1 | 0.6136 | 0.6097 | 0.5943 | |
K2 | 0.6161 | 0.6724 | 0.6293 | |
K3 | 0.6375 | 0.5851 | 0.6436 | |
R | 0.0239 | 0.09 | 0.0494 |
表2 正交实验结果记录及数据处理
Table 2 Record of orthogonal experimental results and data processing
实验号 | A | B | C | 转化率/% |
---|---|---|---|---|
1 | 2(6∶1) | 1(13%) | 2(3 h) | 55.46 |
2 | 2(6∶1) | 2(15%) | 3(4 h) | 70.82 |
3 | 2(6∶1) | 3(17%) | 1(2 h) | 58.55 |
4 | 1(5.8∶1) | 1(13%) | 1(2 h) | 59.36 |
5 | 1(5.8∶1) | 2(15%) | 2(3 h) | 70.54 |
6 | 1(5.8∶1) | 3(17%) | 3(4 h) | 54.19 |
7 | 3(6.2∶1) | 1(13%) | 3(4 h) | 68.08 |
8 | 3(6.2∶1) | 2(15%) | 1(2 h) | 60.37 |
9 | 3(6.2∶1) | 3(17%) | 2(3 h) | 62.80 |
K1 | 0.6136 | 0.6097 | 0.5943 | |
K2 | 0.6161 | 0.6724 | 0.6293 | |
K3 | 0.6375 | 0.5851 | 0.6436 | |
R | 0.0239 | 0.09 | 0.0494 |
样品标号 | 扭矩/% | 黏度/(mPa·s) | 平均值/(mPa·s) |
---|---|---|---|
1 | 49.2 | 29 | 30 |
50.8 | 30 | ||
51.7 | 30 | ||
2 | 51.8 | 30 | 30 |
51.9 | 30 | ||
51.2 | 30 |
表3 反应产物黏度测试记录
Table 3 Test record of reaction product viscosity
样品标号 | 扭矩/% | 黏度/(mPa·s) | 平均值/(mPa·s) |
---|---|---|---|
1 | 49.2 | 29 | 30 |
50.8 | 30 | ||
51.7 | 30 | ||
2 | 51.8 | 30 | 30 |
51.9 | 30 | ||
51.2 | 30 |
1 | ZhaoY J, SaldañaM D A. Use of potato by-products and gallic acid for development of bioactive film packaging by subcritical water technology[J]. The Journal of Supercritical Fluids, 2019, 143: 97-106. |
2 | IbarraV G, de QuirósA R B, LosadaP P, et al. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products[J]. Analytical and Bioanalytical Chemistry, 2018, 410(16): 3789-3803. |
3 | 李志平, 吴雄杰, 赵康, 等.食品塑料包装材料中常见有毒有害单体介绍[J]. 塑料包装, 2016, 26(5): 56-60. |
LiZ P, WuX J, ZhaoK, et al. The introduction of main harmful monomer for plastic materials for food packaging[J]. Plastics Packaging, 2016, 26(5): 56-60. | |
4 | 许勇, 于建, 韩晶, 等.气相色谱-质谱测定化妆品中21种塑化剂的含量[J]. 中国卫生检验杂志, 2014, 11(22): 3211-3216. |
XuY, YuJ, HanJ, et al. Determination of phthalate acid esters in cosmetic by GC-MS[J]. Chin. J. Health Lab. Tec., 2014, 11(22): 3211-3216. | |
5 | 蔡霞, 黄艳婷, 符美燕, 等. HPLC法测定化妆品中 12 种邻苯二甲酸酯类化合物[J]. 日用化学工业, 2018, 48(7): 415-418. |
CaiX, HuangY T, FuM Y, et al. Determination of 12 kinds of phthalates in cosmetics by HPLC[J]. China Surfactant Detergent & Cosmetics, 2018, 48(7): 415-418. | |
6 | 张丽霞, 蒋莎, 钟玉心, 等. GC-MS检测玩具原材料中塑化剂的不确定度评定[J]. 广东化工, 2018, 45(378): 180-182. |
ZhangL X, JiangS, ZhongY X, et al. Evaluation of the uncertainty in measurement of the plasticizer in the raw by GC-MS[J]. Guangdong Chemical Industry, 2018, 45(378): 180-182. | |
7 | StringerR, LabunskaI, SantilloD. Concentrations of phthalate esters and identification of other additives in PVC children’s toys[J]. Environmental Science and Pollution Research, 2000, 7(1): 27-36. |
8 | 魏志华.全球法规背景与我国增塑剂行业[J]. 精细与专用化学品, 2012, 20(5): 9-12. |
WeiZ H. Background of global legislation and China's plasticizer industry[J]. Fine and Specialty Chemicals, 2012, 20(5): 9-12. | |
9 | 苏会波, 林海龙, 郝小明, 等. 环保增塑剂柠檬酸三丁酯的研究、应用和市场现状[J]. 化工新型材料, 2013, 41(10): 15-17. |
SuH B, LinH L, HaoX M, et al. Research, application and market status of nontoxic, environmental plasticizer-tributylcitrate[J]. New Chemical Materials, 2013, 41(10): 15-17. | |
10 | KappeC O. Controlled microwave heating in modern organic synthesis [J]. Angewandte Chemie International Edition, 2004, 43(46): 6250-6284. |
11 | KusurkarR S, NaikN H, NaikP N. ChemInform abstract: combination of AlCl3, ionic liquid, and microwaves: an efficient method for dehydration and 1,3-dipolar cycloaddition: an unusual observation in the presence of acrylonitrile[J]. Synthetic Communications, 2008, 39(45): 1952-1957. |
12 | MallakpourS, TaghaviM. Efficient and rapid synthesis of optically active polyamides in the presence of tetrabutylammonium bromide as ionic liquids under microwave irradiation[J]. Journal of Applied Polymer Science, 2008, 109(6): 3603-3612. |
13 | 陈荣圻. 邻苯二甲酸酯及其环保增塑剂的代用品开发[J]. 印染助剂, 2011, 39(12): 26-35. |
ChenR Q. Development of phthalate and environmental friendly plasticizer substitute[J]. Textile Auxiliaries, 2011, 39(12): 26-35. | |
14 | 丁斌, 韩运华, 宋培文. 柠檬酸三丁酯、乙酰柠檬酸三丁酯合成工艺的研究[J]. 塑料工业, 2003, 31(7): 4-7. |
DingB, HanY H, SongP W. Study of synthesis technology for tributyl citrate and tributyl acetylcitrate[J]. China Plastice Industry, 2003, 31(7): 4-7. | |
15 | 孟平蕊, 李良波, 杨春霞, 等. 对甲苯磺酸催化合成柠檬酸三丁酯[J]. 合成树脂及塑料, 2002, 19(2): 16-18. |
MengP R, LiL B, YangC X, et al. Synthesis of TBC with p-toluene sulfonic acid catalyst[J]. China Synthetic Resin and Plastics, 2002, 19(2): 16-18. | |
16 | 凌慧, 郑成, 毛桃嫣, 等. 响应面法优化微波辅助合成中碳链甘油三酯工艺[J]. 化工学报, 2016, 67(S2): 231-243. |
LingH, ZhengC, MaoT Y, et al. Optimization of microwave-assisted synthesis of medium-chain triacylglycerols using response surface methodology[J]. CIESC Journal, 2016, 67(S2): 231-243. | |
17 | HaS H, AnhT, KooY M. Optimization of lipase-catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids by response surface methodology[J]. Bioprocess and Biosystems Engineering, 2013, 36(6): 799-807. |
18 | ShindeS D, YadavG D. Process intensification of immobilized lipase catalysis by microwave irradiation in the synthesis of 4-chloro-2-methylphenoxyacetic acid (MCPA) esters[J]. Biochemical Engineering Journal, 2014, 5: 96-102. |
19 | 魏渊, 郑成, 毛桃嫣, 等. 山嵛酸双酯基有机硅季铵盐的微波合成工艺及性能[J]. 化工进展, 2018, 37(8): 3169-3177. |
WeiY, ZhengC, MaoT Y, et al. Microwave synthesis process and properties of behenic acid diester-based silicone quaternary ammonium salt [J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3169-3177. | |
20 | LiJ Y, ZhangQ S, WangY, et al. Synthesis and properties of organosilicon quaternary salts surfactants[J]. Journal of Surfactants and Detergents, 2012, (3): 339-344. |
21 | 练萍, 李雷, 薛君, 等. 微波辐射下稀土固体超强酸催化合成蔗糖棕榈酸酯[J]. 稀土, 2008, 29(2): 25-29. |
LianP, LiL, XueJ, et al. Catalytic synthesis of sucrose palmitic acid ester by rare earth solid super acid under microwave irradiation[J]. Chinese Rare Earths, 2008, 29(2): 25-29. | |
22 | YadavG D, NairJ J. Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J]. Microporous and Mesoporous Materials, 1999, 6(33): 1-48. |
23 | 李静, 蒋剑春, 徐俊鸣. 柠檬酸酯合成用催化剂研究进展[J]. 生物质化学工程, 2009, 43(1): 52-56. |
LiJ, JiangJ C, XuJ M. Research progress in the catalyst for synthesis of citric acid esters[J]. Biomass Chemical Engineering, 2009, 43(1): 52-56. | |
24 | 姚志龙, 肖贡程, 张军, 等. 离子液体催化合成醋酸正丙酯的工业实验[J]. 精细化工, 2010, 27(2): 147-154. |
YaoZ L, XiaoG C, ZhangJ, et al. Industrial experiment of ionic liquid catalyst in n-propyl acetate synthesis[J]. Fine Chemicals, 2010, 27(2): 147-154. | |
25 | 张小曼. 离子液体催化合成乙酸丙酯的研究[J]. 化学工程师, 2009, 163(4): 65-67. |
ZhangX M. Catalytic synthesis of propyl acetate in ionic liquid [bmim]PTSA[J]. Chemical Engineer, 2009, 163(4): 65-67. | |
26 | 周扬志, 佘鹏伟, 郭凯. 三氟甲磺酸催化合成柠檬酸酯[J]. 现代化工, 2012, 32(5): 67-70. |
ZhouY Z, SheP W, GuoK. Synthesis of citric acid ester catalysed by trifluoromethanesulfonic acid[J]. Modern Chemical Industry, 2012, 32(5): 67-70. | |
27 | 陈昊, 杜山山, 王焱明, 等. 合成柠檬酸酯类增塑剂催化剂及柠檬酸酯类增塑剂的应用[J]. 工业催化, 2017, 25(2): 14-17. |
ChenH, DuS S, WangY M, et al. The catalysts for synthesis of citrate esters plasticizers and the application of citrate esters plasticizers[J]. Industrial Catalysis, 2017, 25(2): 14-17. | |
28 | 刘世强, 宁培森, 丁著明. 环保型增塑剂的合成与应用研究进展[J]. 塑料助剂, 2016, (5): 4-11. |
LiuS Q, NingP S, DingZ M. Advance on synthesis and application of environment-friendly plasticizers[J]. Plastics Additives, 2016, (5): 4-11. | |
29 | 郭康斌, 钱超, 陈新发, 等. 离子液体催化合成乙酰柠檬酸三丁酯[J].高校化学工程学报, 2014, 28(2): 396-400. |
GuoK B, QianC, ChenX F, et al. Synthesis of acetyl trinbutyl citrate with an ionic liquid catalyst[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2): 396-400. | |
30 | 贾普友, 周永红, 胡立红, 等. 绿色增塑剂的研究进展[J]. 中国塑料, 2014, 28(7): 6-10. |
JiaP Y, ZhouY H, HuL H, et al. Application and progress of green plasticizers[J]. China Plastic, 2014, 28(7): 6-10. | |
31 | 钱伯章. 国外增塑剂行业最新发展动态[J]. 国外塑料, 2011, 29(11): 36-38. |
QianB Z. Plasticizer industry s latest developments[J]. World Plastics, 2011, 29(11): 36-38. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[4] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[12] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[13] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[14] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[15] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||